多连通多边形的内部Voronoi图的顶点和边数的上界
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60473103, 60473127 (国家自然科学基金); the Natural Science Foundation of Shandong Province of China under Grant No.Z2002G01 (山东省自然科学基金); the ChinaGrid Project under Grant Nos.CG03-GF012


Upper Bounds on the Size of Inner Voronoi Diagrams of Multiply Connected Polygons
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多边形的Voronoi图在路径规划、碰撞检测等方面有着广泛的应用,其顶点和边数在这些应用算法的复杂度分析方面起着重要作用.Held证明了一个简单多边形的内部Voronoi图最多有n+k-2个顶点和2(n+k)-3条边,其中nk分别是多边形的顶点和内尖点数.但其结论不能适用于多连通多边形.对多连通多边形进行研究,通过将其Voronoi图转化为有根树,并利用有根树的性质,给出了其内部Voronoi图的顶点和边数上界的估计,并对Voronoi区域的边界所包含顶点和边数的平均值进行了讨论."SDU数字博物馆"系统所采用的基于Voronoi图的可见性算法的复杂度分析,就利用了所得出的结论.

    Abstract:

    The Voronoi diagram (VD) of a planar polygon has many applications, from path planning in robotics to collision detection in virtual reality. To study the complexity of algorithms based on Voronoi diagram, it is important to estimate the numbers of vertices and edges of a VD. Held proves that the inner Voronoi diagram of a simple polygon has at most n+k-2 vertices and 2(n+k)-3 edges, where n is the number of the polygon's vertices and k is the number of reflex vertices. But this conclusion holds not for a multiply-connected polygon, i.e. a polygon with "holes". In this paper, by constructing a rooted tree from a VD, and based on some properties of the rooted tree,new upper bounds on the numbers of vertices and edges in an inner Voronoi diagram of a multiply-connected polygon are proved. The average numbers of Voronoi vertices and edges on the boundary of a VD are also presented.The result of this paper has been used to analyze the complexity of VD-based visibility computing algorithm in SDU Virtual Museum.

    参考文献
    相似文献
    引证文献
引用本文

杨承磊,汪嘉业,孟祥旭.多连通多边形的内部Voronoi图的顶点和边数的上界.软件学报,2006,17(7):1527-1534

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-01-05
  • 最后修改日期:2005-12-31
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号