RNA二级结构预测中动态规划的优化和有效并行
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported bythe National Natural Science Foundation of China under Grant No.60372040(国家自然科学基金);the Knowledge Innovative Project ofthe Chinese Academy of Sceiences under Grant No.KSCX2-SW-233(中国科学院知识创新工程重大项目)


An Optimized and Efficiently Parallelized Dynamic Programming for RNA Secondary Structure Prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于最小自由能模型的方法是计算生物学中RNA二级结构预测的主要方法,而计算最小自由能的动态规划算法需要O(n4)的时间,其中n是RNA序列的长度.目前有两种降低时间复杂度的策略:限制二级结构中内部环的大小不超过k,得到O(n2×k2)算法;Lyngso方法根据环的能量规则,不限制环的大小,在O(n3)的时间内获得近似最优解.通过使用额外的O(n)的空间,计算内部环中的冗余计算大为减少,从而在同样不限制环大小的情况下,在O(n3)的时间内能够获得最优解.然而,优化后的算法仍然非常耗时,通过有效的负载平衡方法,在机群系统上实现并行程序.实验结果表明,并行程序获得了很好的加速比.

    Abstract:

    RNA secondary structure prediction based on free energy rules remains a major computational method in computational biology. Its basic dynamic programming algorithm needs O(n4) time to calculate the minimum free energy for RNA secondary structure, where n is the length of RNA sequence. There are two variants for handling this problem: either the internal loops are bounded by a maximal size k, giving a time complexity of O(n2×k2), or one uses the trick of Lyngso, which makes use of the rules of loop energies, to reduce time complexity to O(n3) for suboptimal free energy without restriction. Only with additional O(n) space, a new algorithm is proposed to eliminate the redundant calculation in the energy of internal loops and reduce the time complexity to O(n3) with unrestricted loop sizes for optimal free energy. While the optimized algorithm is time consuming, an efficient parallel algorithm with good load balancing in cluster systems is also proposed. The experimental results show that the parallel program achieves reasonable speedups.

    参考文献
    相似文献
    引证文献
引用本文

谭光明,冯圣中,孙凝晖. RNA二级结构预测中动态规划的优化和有效并行.软件学报,2006,17(7):1501-1509

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-06-06
  • 最后修改日期:2005-12-13
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号