参数可变系统时间序列短期预测方法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60375021(国家自然科学基金);the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(教育部留学回国人员科研启动基金);the Hu'nan Provincial Natural Science Foundation of China under Grant Nos.03JJY3096,04JJ20010,05JJ10011(湖南省自然科学基金);the Scientific Research Fund of Hunan Provincial Education Department of China under Grant Nos.04A056,05C092(湖南省教育厅基金)


An Approach for Short-Term Prediction on Time Series from Parameter-Varying Systems
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    时间序列预测是一类非常重要的问题,但基本上局限于参数不可变问题的研究,而对实际问题中经常出现的更重要的参数可变系统的预测,由于构成几乎所有已有预测技术基础的Taken嵌入定理不再成立,所以这方面的研究成果极少.使用一种将(多)小波变换与反向传播神经网络相结合的新型网络结构--(多)小波神经网络,尝试对参数可变时间序列的预测.因为(多)小波神经网络的误差函数是一个凸函数,这在一定程度上可以避免经典神经网络容易陷入局部极小、收敛速度慢等问题.对著名的Ikeda参数可变系统的实验表明,多小波神经网络的预测性能较单小波神经网络要好,而单小波神经网络的性能较BP网要好.因此,该方法不失为时间可变系统预测的一种好的推荐.

    Abstract:

    Time series prediction is a very important problem in many applications and the current prediction techniques are nearly all based on the Takens' embedding theorem. Many realistic systems are parameter-varying systems, and the embedding theorems are invalid, predicting the behavior of parameter-varying systems is more difficult. This paper proposes the novel prediction techniques for parameter-varying systems reconstruction, which are based on wavelet neural network (WNN) and multiwavelets neural network (MWNN). These techniques absorb the advantages of high resolution of wavelet and learning of neural networks. The significant improvement is that the error's functions of both networks are convex, and the problem of poor convergence and undesired local minimum can be solved remarkably. Ikeda time series generated by the parameter-varying systems is adopted to check the prediction performance of the proposed models. The numerical experiments show that the three proposed models are feasible, MWNN has the top performance, and WNN could lead the better results than NN in the prediction of the parameter-varying systems.

    参考文献
    [1]Principe JC,Rathie A,Kuo JM.Prediction of chaotic time series with neural networks and the issue of dynamic modelingInt'l Journal of Bifurcation and Chaos,1992,2(4):989-996.
    [2]Aussem A.Dynamical recurrent neural networks towards prediction and modeling ofdynamical systems.Neurocomputing,1999,28:207-232.
    [3]Dash PK,Satpathy HP,C.Liew A,Rahman S.A real-time short-term load forecasting system using functional link network.IEEE Trans.on Power System,1997,12:675-680.
    [4]Pan WM,Shen L.Regularized learning algorithm for neural networkbased time series dynamic predictors.Acta Electronica Sinica,1999,27(11):1-4 (in Chinese with English abstract).
    [5]Conway AJ,Macpherson PK,Brown JC.Delayed time series predictions with neural networks Neurocomputing,1998,18(1):81-89.
    [6]Geva AB.Scale-Multiscale neural network architecture for time series prediction.IEEE Trans.on Neural Networks,1998,(9):1471-1998.
    [7]Gao XP,Xiao F.Short-Term prediction of chaotic time series by wavelet networks.In:Proc.of the 5th World Congress on Intelligent Control and Automation.2004.1931-1935.
    [8]Lyengar SS,Cho EC,V.Phoha V.Foundations of Wavelet Networks and Applications.A Chapman & Hall/CRC Press,2002.
    [9]Mallat S.A theory for multiresolution signal decomposition:The wavelet representation IEEE Trans.on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
    [10]Daubechies I.Ten Lectures on Wavelets.Montpelier.Capital City Press,1992.
    [11]Chui CK,Lian J.A study of orthonormal multiwavelets.Applied Numerical Mathematics,1996,20(3):273-298.
    [12]Jiao LC,Pan J,Fang YW.Multiwavelet neural network and its approximation properties IEEE Trans.on Neural Networks,2001,12(5):1060-1066.
    [13]Li XL,Gao XP.Multiwavelet neural network:A novel model.In:Proc.of the IEEE Intl Conf.on Systems,Man and Cybernetics.2003.2629-2632.
    [14]Gao XP.A comparative research on wavelet neural networks.In:Wang L,ed.Proc.of the 9th Intl Conf.on Neural Information Processing.Singapore:Orchid Country Club.2002.1699-1703.
    [15]Smith LI.A tutorial on principal components analysis.2002.http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
    [4]潘维民,沈理.基于神经网络的时间序列动态预测器的调整学习算法.电子学报,1999,27(11):1-4.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖芬,高协平.参数可变系统时间序列短期预测方法.软件学报,2006,17(5):1042-1050

复制
相关视频

分享
文章指标
  • 点击次数:4104
  • 下载次数: 5505
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2004-08-13
  • 最后修改日期:2005-07-08
文章二维码
您是第19945876位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号