基于样本之间紧密度的模糊支持向量机方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60273005 (国家自然科学基金); the Chinese Postdoctoral Science Foundation under Grant No.2005038310 (中国博士后科学基金); the Natural Science Foundation of Hubei Province of China under Grant No.2004ABA043 (湖北省自然科学基金); the Key Science Technology Research Project of Hubei Provincial Department of Education under Grant No. D200612002 (湖北省教育厅科学技术研究重点项目)


Fuzzy Support Vector Machine Based on Affinity Among Samples
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统支持向量机方法中存在对噪声或野值敏感的问题,提出了一种基于紧密度的模糊支持向量机方法.在确定样本的隶属度时,不仅考虑了样本与类中心之间的关系,还考虑了类中各个样本之间的关系.通过样本之间的紧密度来描述类中各个样本之间的关系,利用包围同一类中样本的最小球半径大小来度量样本之间的紧密度.样本的隶属度依据样本在球中的位置,按照不同的规律确定与基于样本与类中心之间关系构建的模糊支持向量机方法相比,该方法有利于将野值或含噪声样本与有效样本进行区分.实验结果表明,与传统支持向量机方法及基于样本与类中心之间关系的模糊支持向量机方法相比,基于紧密度的模糊支持向量机方法具有更好的抗噪性能及分类能力.

    Abstract:

    Since SVM is very sensitive to outliers and noises in the training set, a fuzzy support vector machine algorithm based on affinity among samples is proposed in this paper. The fuzzy membership is defined by not only the relation between a sample and its cluster center, but also those among samples, which is described by the affinity among samples. A method defining the affinity among samples is considered using a sphere with minimum volume while containing the maximum of the samples. Then, the fuzzy membership is defined according to the position of samples in sphere space. Compared with the fuzzy support vector machine algorithm based on the relation between a sample and its cluster center, this method effectively distinguishes between the valid samples and the outliers or noises. Experimental results show that the fuzzy support vector machine based on the affinity among samples is more robust than the traditional support vector machine, and the fuzzy support vector machines based on the distance of a sample and its cluster center.

    参考文献
    相似文献
    引证文献
引用本文

张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法.软件学报,2006,17(5):951-958

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-09-24
  • 最后修改日期:2005-11-08
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号