单变量均匀静态细分格式的连续性分析和构造
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.10201030,60473132(国家自然科学基金);the National Grand Fundamental Research 973 Program of China under Grant No.2004CB318000(国家重点基础研究发展计划(973));the National Science Fundfor Distinguished Young Scholars of China under Grant No.60225002(国家杰出青年科学基金);the Teaching and Research Award Program for Outstanding Young Teachersin Higher EducationInstitutions of the MOE(教育部高校优秀青年教师教学科研奖励计划)


Continuity Analysis and Construction of Uniform Stationary Univariate Subdivision Schemes
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    利用单变量均匀稳定细分格式Ck连续的充要条件,分析了已有的插值曲线格式各阶连续时参数的取值范围.首次指出了六点二重插值格式可以达到C3连续,并构造了一种新的C3连续的六点三重插值细分格式.

    Abstract:

    With the necessary and sufficient conditions for Ck-continuity of uniform stationary subdivision schemes, the range of free parameter in several classical interpolating curve schemes is presented. For the first time, this paper points out that the arity-2 interpolating 6-point scheme is C3-continuous in certain range. A new C3-continuous arity-3 interpolating 6-point scheme is also proposed.

    参考文献
    [1]Chaikin GM.An algorithm for high speed curve generation.Computer Graphics and Image Processing,1974,3(4):346-349.
    [2]Dubuc S.Interpolation through an iterative scheme Journal of Mathematical Analysis and Applications,1986,114(1):185-204.
    [3]Dyn N,Gregory JA,Levin D.A 4-point interpolatory subdivision scheme for curve design.Computer Aided Geometric Design,1987,4(4):257-268.
    [4]Deslauriers G,Debuc S.Symmetric iterative interpolation processes.Constructive Approximation,1989,5(1):49-68.
    [5]Kobbelt L.√3 -Subdivision.In:Proc.of the SIGGRAPH 2000.New York:ACM Press,2000.103-112.
    [6]Hassan MF,Dodgson NA.Ternary and three-point univariate subdivision schemes.In:Cohen A,Merrien JL,Schumaker LL,eds.Curve and Surface Fitting:Saint-Malo 2002.Brentwood:Nashboro Press,2003.199-208.
    [7]Hassan MF,Ivrissimitzis IP,Sabin MA.An interpolating 4-point C2 ternary stationary subdivision scheme.Computer Aided Geometric Design,2002,19(1):1-18.
    [8]Dyn N,Gregory JA,Levin D.Analysis of uniform binary subdivision scheme for curve design.Constructive Approximation,1991,7(2):127-147.
    [9]Dyn N,Levin D,Micchelli CA.Using parameters to increase smoothness of curves and surfaces generated by subdivision.Computer Aided Geometric Design,1990,7(2):129-140.
    [10]Dyn N.Analysis of convergence and smoothness by the formalism of Laurent polynomials.In:Iske A,Quak E,Floater MS,eds.Tutorials on Multiresolution in Geometric Modelling.New York:Springer-Verlag,2002.51-64.
    [11]Romani L.Classifying uniform univariate refinement schemes and predicting their behaviour.In:Dodgson NA,Floater MS,Sabin MA,eds.Proc.of the MINGLE 2003.123-134.
    [12]Ivrissimitzis IP,Dodgson NA,Hassan MF,Sabin MA.On the geometry of recursive subdivision.Int'l Journal of Shape Modeling,2002,8(1):23-42.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄章进.单变量均匀静态细分格式的连续性分析和构造.软件学报,2006,17(3):559-567

复制
分享
文章指标
  • 点击次数:4634
  • 下载次数: 5045
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2005-04-13
  • 最后修改日期:2005-08-25
文章二维码
您是第19939675位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号