Bézier曲线曲面正则性的判别条件
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60021201,60503057,60333010(国家自然科学基金);the National Grand Fundamental Research 973 Program of China under Grant No.2004CB719400(国家重点基础研究发展规划(973))


Conditions for Determining the Regularity of Bézier Curve and Surface
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [10]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    正则性是参数曲线曲面的重要代数性质,是由参数曲线曲面的参数化决定的.在计算机辅助制造过程中,要求所处理的参数曲线曲面是正则的,前提是计算机辅助设计得到的参数曲线曲面是正则曲线曲面.然而,直接按照正则参数曲线曲面的定义,采用解方程或方程组的方法来判断曲线曲面是否正则,其计算相当复杂,实际上也是行不通的.通过将Bézier曲线曲面的导矢曲线(法矢曲面)的参数表示转换为隐式表示,得到了一个判断Bézier曲线曲面正则性的简单而实用的充分条件.

    Abstract:

    Regularity is an important algebraic property of parametric curve and surface, which depends on the parameterization of parametric curve and surface. In computer-aided manufacturing, the processed parametric curve and surface should be regular, so the parametric curve and surface generated by computer-aided design should be regular first. However, the computation of determining the regularity of parametric curve and surface by solving equation or system of equations induced by the definition of regularity is considerably complex, and is actually infeasible. In this paper, by transforming the parametric representations of derivative vector curve (of Bézier curve) and normal vector surface (of Bézier surface) to their implicit representations, a simple and practical sufficient condition for determining the regularity of Bézier curve and surface is presented.

    参考文献
    [1]Piegl L,Tiller W.The NURBS Book.2nd ed.Berlin:Springer-Verlag,1997.
    [2]Fausett LV.Numerical Methods Using Mathcad.New Jersey:Prentice-Hall,2002.
    [3]Farin G.Curves and Surfaces for Computer Aided Geometric Design A Practical Guide.2nd ed.San Diego:Academic Press,1990.
    [4]Wang GJ,Wang GZ,Zheng JM.Computer Aided Geometric Design.Beijing Higher Education Press; Berlin:Springer-Verlag,2001 (in Chinese).
    [5]Sederberg TW,Anderson DC,Goldman RN.Implicit representation of parametric curves and surfaces.Computer Vision,Graphics,and Image processing,1984,28:72-84.
    [6]Zhang M,Chionh E,Goldman RN.Hybrid dixon resultants.In:Cripps R,ed.Proc.of the 8th IMA Conf.on the Mathematics of Surfaces.Winchester:Information Geometers Ltd.,1998.193-212.
    [7]Chen JL,Chen XH.Special Matrices.Beijing:Tsinghua UniversityPress,2001 (in Chinese).
    [8]Chionh EW.Concise parallel dixon determinant.Computer Aided Geometric Design,1997,14:561-570.
    [4]王国瑾,汪国昭,郑建民计算机辅助几何设计.北京:高等教育出版社;柏林:施普林格出版社,2001.
    [7]陈景良,陈向晖.特殊矩阵北京:清华大学出版社,2001.
引用本文

蔺宏伟,王青,鲍虎军. Bézier曲线曲面正则性的判别条件.软件学报,2006,17(3):516-524

复制
相关视频

分享
文章指标
  • 点击次数:4299
  • 下载次数: 5714
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2005-04-13
  • 最后修改日期:2005-04-13
文章二维码
您是第19939675位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号