小世界体系的多对多核联想记忆模型及其应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60271017, 60505004 (国家自然科学基金); the Jiangsu Natural Science Foundation of China under Grant No. BK2004001 (江苏省自然科学基金); the Jiangsu Planned Projects for Postdoctoral Research Funds (江苏省博士后科研资助计划)


Small World Structure Inspired Many to Many Kernel Associative Memory Models and Their Application
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    运用机器学习中新颖的核方法和社会网络中广泛存在的小世界现象,对Hattori等人提出的多模块多对多联想记忆模型(multi-module associative memory for many-to-many associations,简称(MMA)2)进行了改进,构建出了一个基于小世界体系的多对多核联想记忆模型框架(small world structure inspired many to many kernel associative memory models,简称SWSI-M2KAMs).该框架不仅克服了原模型不能联机提交训练样本且迭代次数过多的缺陷,而且拓展了原模型的智能信息处理范围.更重要的是,通过核函数的选取,该模型框架可以衍生出更多新的多对多联想记忆模型,而且,由于小世界结构的引入,在一定程度上简化了模型的结构复杂度.最后的计算机模拟,证实了新的模型具有良好的多对多联想记忆功能.

    Abstract:

    Kernel method is an effective and popular trick in machine learning, and small world network is a common phenomenon which exists widely in social fields. In this paper, by introducing them into Hattori et al’s multi-module associative memory for many-to-many associations ((MMA)2), a unified framework of small world structure inspired many-to-many kernel associative memory models (SWSI-M2KAMs) is proposed. The SWSI-M2KAMs not only can store patterns online without more iteration steps, but also extend the range of the processed intelligent information. More importantly, the SWSI-M2KAMs framework can develop more new many-to-many associative memory models by selecting different kernel functions and reduce models’ configuration complexity by using the sparse small world architecture. Finally, computer simulations demonstrate that the constructed models have good performance on many-to-many associative memory.

    参考文献
    相似文献
    引证文献
引用本文

陈蕾,陈松灿,张道强.小世界体系的多对多核联想记忆模型及其应用.软件学报,2006,17(2):223-231

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-02-28
  • 最后修改日期:2005-07-11
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号