一种基于图像灰度的快速匹配算法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60135010, 60321002 (国家自然科学基金); the National Grand Fundamental Research 973 Program of China under Grant No.2004CB318108 (国家重点基础研究发展规划(973))


A Fast Matching Algorithm Based on Image Gray Value
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在图像模板匹配问题中,基于像素灰度值的相关算法尽管已经十分普遍,并得到广泛的应用,但目前此类算法都还存在有时间复杂度高、对图像亮度与尺寸变化敏感等缺点.为了克服这些缺点,提出一种新的基于图像灰度值的编码表示方法.这种方法将图像分割为一定大小的方块(称为R-块),计算每个R-块图像的总灰度值,并根据它与相邻R-块灰度值的排序关系进行编码.然后通过各个R-块编码值的比较,实现图像与模板的匹配新算法中各个R-块编码的计算十分简单;匹配过程只要对编码值进行相等比较,而且可以采用快速的比较算法新算法对像素灰度的变化与噪声具有鲁棒性,其时间复杂度是O(M2log(N)).实验结果表明,新算法比现有的灰度相关算法的计算时间快了两个数量级.

    Abstract:

    Correlation algorithms based on pixel gray value are very popular and widely used in image template matching. However, these algorithms have high time complexity and are sensitive to the variation of image luminance and scale. To avoid that, a new algorithm based on coding image grey value is proposed. This algorithm divides the image into certain size blocks called R-block, sums the gray value of each R-block pixel, and codes the R-block according to the sorting result among the neighborhood of R-blocks. Image and template are matched by comparing their R-block coding. The R-block is very rapidly and easily coded and only equality comparison is needed. The new algorithm is robust to the linear transformation of pixel grey value and image noise. Its time complexity is reduced to O(M2log(N)), or namely is improved two order of magnitude in contrast to the current correlation algorithms’.

    参考文献
    [1]Heipke C.Overview of image matching techniques.In Kolbl O,ed.Proc.of the OEEPE Workshop on the Application of Digital Photogrammetric Workstations.Frankfürt:OEEPE Official Publications,1996.173-189.
    [2]Mikolajczyk K,Schmid C.Scale & affine invariant interest point detectors.Int'l Journal of Computer Vision,2004,60(1):63-86.
    [3]Yu L,Wang RS.Object detection and recognition based on multiscale deformable template.Journal of Computer Research and Development,2002,39(10):1325-1330 (in Chinese with English abstract).
    [4]Brown LG.A survey of image registration techniques.ACM Computing Surveys,1992,24(4):325-376.
    [5]Barnea DI,Silverman HF.A class of algorithms for fast digital image registration.IEEE Trans.on Computers,1972,21(2):179-186.
    [6]Zhang A,Cheng B,Acharya R.A fractal-based clustering approach in large visual database systems.The Int'l Journal of Multimedia Tools and Applications,1996,3(3):225-244.
    [7]Wang Z,Chi Z,Feng D.Content-Based image retrieval using block-constrained fractal coding and nona-tree decomposition.IEE Proc.of Vision,Image and Signal Process,2000,147(1):9-15.
    [8]Wang ZY,Chi ZR,Yu YL.Fractal coding for image retrieval.ACTA Electronica Sinica,2000,28(6):19-23 (in Chinese with English abstract).
    [9]Hong AX,Chen G,Wu JF,Li JL.Image matching based on fractal image coding.ACTA Electronica Sinica,2002,30(5):624-627(in Chinese with English abstract).
    [10]Fisher Y.Fractal image compression with quadtrees.In:Fisher Y,ed.Fractal Image Compression:Theory and Application.New York:Springer-Verlag,1995.55-77.
    [3]余莉,王润生.基于多尺度变形模板的目标检测与识别.计算机研究与发展,2002,39(10):1325-1330.
    [8]王志勇,池哲儒,余英林.分形编码在图像检索中的应用.电子学报,2000,28(6):19-23.
    [9]洪安祥,陈刚,吴炯锋,李均利.基于分形编码的图像相似匹配研究.电子学报,2002,30(5):624-627.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李强,张钹.一种基于图像灰度的快速匹配算法.软件学报,2006,17(2):216-222

复制
分享
文章指标
  • 点击次数:5622
  • 下载次数: 16335
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2004-10-10
  • 最后修改日期:2005-06-02
文章二维码
您是第19993355位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号