数据流中一种快速启发式频繁模式挖掘方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported bytheNationalNatural Science Foundation of China under Grant Nos.60473073,60573090,60503036(国家自然科学基金)


A High-Speed Heuristic Algorithm for Mining Frequent Patterns in Data Stream
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在现有的数据流频繁模式挖掘算法中,批处理方法平均处理时间短,但需要积攒足够的数据,使得其实时性差且查询粒度粗;而启发式方法可以直接处理数据流,但处理速度慢.提出一种改进的字典树结构--IL-TREE(improved lexicographic tree),并在其基础上提出一种新的启发式算法FPIL-Stream(frequent pattem mining based on improved lexicographic tree),在更新模式和生成新模式的过程中,可以快速定位历史模式.算法结合了倾斜窗口策略,可以详细记录历史信息.该算法在及时处理数据流的前提下,也降低了数据的平均处理时间,并且提供了更细的查询粒度.

    Abstract:

    Of the current approaches to frequent pattern discovery in stream data, the batch approach requires enough data, while the heuristic approach can deal with stream data directly. Although the average speed of the batch approach is higher, it cannot response on time and the query granularity is rough. This paper proposes an improved Lexicographic tree, IL-TREE (improved lexicographic tree), and gives a novel heuristic algorithm, called FPIL-Stream (frequent pattern mining based on improved lexicographic tree), which locates the historical patterns rapidly in the stage of updating the patterns and generating the new ones. Moreover, a policy for the titled window is integrated into the algorithm for recording the historical information in details. With the promise of the processing stream data on time, the algorithm reduce the average processing time greatly and provides a finer granularity of query.

    参考文献
    相似文献
    引证文献
引用本文

张昕,李晓光,王大玲,于戈.数据流中一种快速启发式频繁模式挖掘方法.软件学报,2005,16(12):2099-2105

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2004-11-29
  • 最后修改日期:2005-03-11
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号