多裁剪自由曲面生成有限元网格的实现
作者:
基金项目:

Supported by the National High-Tech Research and Development Plan of China under Grant No.863-511-820-020(国家高技术研究发展计划(863))


Implementation of Finite Element Method Mesh Generation from Multiple Trimmed Free Surfaces
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    论述了多裁剪自由曲面生成有限元曲面网格的几个关键技术.采用了推进波前法生成曲面网格,给出了核心算法;在曲面算法中运用了介于参数法与直接法之间的新方法.针对求解曲面上最优点的参数域反算问题,引入了切矢逆求方法,可使迭代次数大为降低.测试表明,该算法快速、稳定.对大型的多裁剪自由曲面生成的曲面有限元网格,可直接用于有限元计算.

    Abstract:

    In this paper, some key techniques about FEM surface mesh generation from multiple trimmed free surfaces are presented. The Advancing Front method is adopted and its kernel algorithm is given. A new method combining the parametric space method and direct 3D method is used during the surface calculation. As for the parametric space calculation to find an optimal 3D point, the Tangent Vector Inversion is presented so as to cut down iteration. Test results show this algorithm is quicker and more robust. The FEM mesh generated from large multiple trimmed free surfaces can be applied to finite element method directly.

    参考文献
    [1]Guan ZQ,Song C,Gu YX,Sui XF.Recent advances of research on finite element mesh generation methods.Journal of Computer-Aided Design and Computer Graphics,2003,15(1):1-14 (in Chinese with English abstract).
    [2]Owen SJ.Non-Simplical unstructured mesh generation [Ph.D.Thesis].Carnegie Mellon University,1999.
    [3]Sheng X,Hirsch BE.Triangulation of trimmed surfaces in parametric space.Computer-Aided Design,1992,24(8):437-444.
    [4]Li MC,Luo HZ,Zhou Ji.Triangulation of arbitrary curved surfaces using improved advancing front method.Journal of Wuhan Institute of Chemical Technology,1999,21(2):57-61 (in Chinese with English abstract).
    [5]Lau TS,Lo SH,Lee CK.Generation of quadrilateral mesh over analytical curved surfaces.Finite Elements in Analysis and Design,1997,27(6):251-272.
    [6]Moller P,Hansbo P.On advancing front mesh generation in three dimensions.Int'l Journal for Numerical Methods in Engineering,1995,38(21):3551-3569.
    [7]Guan ZQ,Sui XF,Gu YX,Li YP.Automatic finite element mesh generation over 3D combined surfaces.Chinese Journal of Computational Mechanics,2003,20(4):409-416 (in Chinese with English abstract).
    [8]Borouchaki H,George PL,Hecht F,Laug P,Saltel E.Delaunay mesh generation governed by metric specifications,Part Ⅰ,algorithms.Finite Elements in Analysis and Design,1997,25(1):61-83.
    [9]Xiong Y,Hii YJ,Zhao JJ.An algorithm of surface triangulation based on mapping and Delaunay method.Journal of Computer-Aided Design and Computer Graphics,2002,14(1):57-60 (in Chinese with English abstract).
    [10]Zhang S,Shi FZ.Implement of repairing and stitch in multiple trimmed free surfaces.Journal of Computer-Aided Design and Computer Graphics,2005,17(4):699-703 (in Chinese with English abstract).
    [11]Peraire J,Vahdati M,Morgan K,Zienkiewicz OC.Adaptive remeshing for compressible flow computations.Journal of Computational Physics,1987,72(4):449-466.
    [12]Lo SH.A new mesh generation scheme for arbitrary planar domains.Int'l Journal for Numerical Methods in Engineering,1985,21 (9):1403-1426.
    [13]Bonet J,Peraire J.An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems.Int'l Journal for Numerical Methods in Engineering,1991,31(1):1-17.
    [14]Piegl L,Tiller W.The NURBS Book.Berlin/Heidelberg:Springer-Verlag,1995.235-236. [1]关振群,宋超,顾元宪,隋晓峰.有限元网格生成方法研究的新进展.计算机辅助设计与图形学学报,2003,15(1):1-14.
    [4]李明春,罗宏志,周济.运用改进的边界推进法对任意曲面进行三角剖分.武汉化工学院学报,1999,21(2):57-61.
    [7]关振群,隋晓峰,顾元宪,李云鹏.复杂三维组合曲面的有限元网格生成方法.计算力学学报,2003,20(4):409--416.
    [9]熊英,胡于进,赵建军.基于映射法和Delaunay方法的曲面三角网格划分算法.计算机辅助设计与图形学学报,2002,14(1):57-60.
    [10]张苏,施法中.多裁剪自由曲面的修补缝合功能的实现.计算机辅助设计与图形学学报,2005,17(4):699-703.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张苏,施法中.多裁剪自由曲面生成有限元网格的实现.软件学报,2005,16(11):2008-2013

复制
分享
文章指标
  • 点击次数:3916
  • 下载次数: 5738
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2004-05-27
  • 最后修改日期:2005-01-07
文章二维码
您是第19784169位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号