基于语义单元表示树剪枝的高速多语言机器翻译
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60343010(国家自然科学基金);the Foundation of Institute of Computing Technology,the Chinese Academy of Sciences under Grant No.20016250(中国科学院计算技术研究所创新基金)


High Speed Multi-Language Machine Translation Based on Pruning on the Tree of Representations of Semantic Elements
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出一种基于语义单元表示树剪枝的高速多语言机器翻译方法.此方法是一种将汉语翻译到其他语种不需要先进行汉语切分的多语言机器翻译方法.而且翻译时间为O(L)而不是O(LN),其中,L是文本的长度,N是语义单元库中语义单元的数量,一般有数十万或者数百万.

    Abstract:

    In this paper, a high speed multi-language machine translation approach based on pruning on tree representations of semantic elements is proposed. This is the multi-language machine translation with the following several characteristics: Chinese segmentation before translation into another languages is not necessary, and the translation time is O(L) rather than general O(LN), where L is the length of text, N is the number of semantic elements (i.e. number of language patterns) in SER-base, even if N is hundreds of thousands or millions.

    参考文献
    [1]Simon HA.Cognitive Psychology,Lecture.Beijing:Peking University,1983.
    [2]Gao QS,et al.The principle of human-like machine translation.Computer Research and Developement,1989,26(2):1-7 (in Chinese with English abstract).
    [3]Brown RD.Example-Based machine translation in Pangloss system.In:Proc.of the COLING'96.Copenhagen,1996.169-174.
    [4]Brown RD.Automated generalization of translation examples.In:Proc.of the COLING 2000.Sarbrucken,2000.125-131.
    [5]Zhao TJ.The principle of machine translation.Harbin:Harbin Institute of Technology,2001 (in Chinese).
    [6]Och FJ,Weber H.Improving statistical natural language translation with categories and rules.In:Proc.of the 35th Annual Conf.of the Association for Computational Linguistics and the 17th Int'l Conf.on Computational Linguistics.Montreal,1998.985-989.
    [7]Och FJ,Tillmann C,Ney H.Improved alignment models for statistical machine translation.In:Proc.of the Joint SIGDAT Conf.on Empirical Methods in Natural Language Processing and Very Large Corpora.College Park:University of Maryland,1999.20-28.
    [8]Kaji H,Kida Y,Morimoto Y.Learning translation templates from bilingual texts.In:Proc.of the COLING'92.1992.672-678.
    [9]Abney SP.Parsing by chunks.In:Berwick R,Abney S,Tenny C.Principle-Based Parsing.Kluwer Academic Publishers,1991.257-278.
    [10]Cicerkli I,Guvenir HA.Learning translation templates from examples.Information Systems,1998,23(6):353-363.
    [11]Miller GA.WordNet.1998.http://www.wordnet.princeton.edu
    [12]Dong ZD,Dong Q.How Net.1999 (in Chinese).http://www.keenage.com
    [13]Gao XY,Gao QS,Hu Y.The multi-language machine translation approach based on Semantic language.Report of Invent Patent,ZL01131689.6,2001 (in Chinese with English abstract).
    [14]Gao QS,Hu Y,Li L,Gao XY.Semantic language and multi-language MT approach based on SL.Journal of Computer Science &Technology,2003,18(6):848-852.
    [2]高庆狮,等类人机译原理.计算机研究与发展,1989,26(2):1-7.
    [5]赵铁军.机器翻译原理.哈尔滨:哈尔滨工业大学出版社,2001.
    [12]董振东,董强知网.1999.http:∥www.keenage.com
    [13]高小宇,高庆狮,胡玥.基于语义语言的机器翻译系统和方法.发明专利报告,ZL01131689.6,2001.
引用本文

高小宇,高庆狮,胡玥,李莉.基于语义单元表示树剪枝的高速多语言机器翻译.软件学报,2005,16(11):1909-1919

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2004-08-10
  • 最后修改日期:2005-02-03
文章二维码
您是第19794288位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号