一种改进的局部切空间排列算法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60175023(国家自然科学基金);the NationalGrand Fundamental Research 973 Program of China under Grant No.2004CB318103(国家重点基础研究发展规划(973))

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    局部切空间排列算法(local tangent space alignment,简称LTSA)是一种新的流形学习算法,能有效地学习出高维采样数据的低维嵌入坐标,但也存在一些不足,如不能处理样本数较大的样本集和新来的样本点.针对这些缺点,提出了一种基于划分的局部切空间排列算法(partitional local tangent space alignment,简称PLTSA).它建立在VQPCA(vector quantization principal component analysis)算法和LTSA

    Abstract:

    Recently, a new manifold learning algorithm, LTSA (local tangent space alignment), has been proposed. It is efficient for many nonlinear dimension reduction problems but unfit for large data sets and newcome data. In this paper, an improved algorithm called partitional local tangent space alignment (PLTSA) is presented, which is based on VQPCA (vector quantization principal component analysis) and LTSA. In the algorithm, the sample space is first divided into overlapping blocks using the X-Means algorithm. Then each block is projected to its local tangent space to get local low-dimensional coordinates of the points in it. At last, the global low-dimensional embedded manifold is obtained by local affine transformations. PLTSA is better than VQPCA in that it gives the global coordinates of the data. It works on a much smaller optimization matrix than that of LTSA and leads to a better-scaled algorithm. The algorithm also provides a set of transformations that allow to calculate the global embedded coordinates of the newcome data. Experiments illustrate the validity of this algorithm.

    参考文献
    [1]Seung HS, Lee DD. The manifold ways of perception. Science, 2000,290(5500):2268-2269.
    [2]Donoho DL, Grimes C. Hessian Eigenmaps: New locally linear embedding techniques for high-dimensional data. Proc. of the National Academy of Sciences of the United States of American, 2003,100(10):5591-5596.
    [3]http:∥www.cse.msu.edu/~lawhiu/manifold/
    [4]Tenenbaum J, Silva VD, Langford J. A global geometric framework for nonlinear dimensionality reduction. Science, 2000,290(5500):2319-2323
    [5]Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000,290(5500):2323-2326.
    [6]Belkin M, Niyogi P. Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Computatior, 2003,15(6):1373-1396.
    [7]Min WL, Lu L, He XF. Locality pursuit embedding. Pattern Recognition, 2004,37(4):781-788.
    [8]Zhang ZY, Zha HY. Principal manifolds and nonlinear dimensionalty reduction via tangent space alignment. SIAM Journal of Scientific Computing, 2004,26(1):313-338.
    [9]Kambhatla N, Leen TK. Dimension reduction by local principal component analysis. Neural Computation, 1997,9(7): 1493-1516.
    [10]Pelleg D, Moore A. X-means: Extending K-means with efficient estimation of the number of clusters. In: Langley P, ed. Proc. of the 17th Int'l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2000. 727-734.
    [11]Chen WH. An Introduction to Differentiable Manifold. 2nd ed., Beijing: Higher Education Press, 2001 (in Chinese).
    [12]Duda RO, Hart PE, Stork DG. Pattern Classification. 2nd ed., New York: Wiley-Interscience, 2000.
    [13]Kass R, Wasserman L. Bayes factors. Journal of the American Statistical Association, 1995,90:773-795.
    [14]http:∥yann.lecun.com/exdb/mnist/
    [15]Hamerly G, Elkan C. Learning the k in k-means. In: Thrun S, ed. Advances of the Neural Information Processing Systems 16.Cambridge: MIT Press, 2004. 281-289.
    [11]陈维桓.微分流形初步.第2版,北京:高等教育出版社,2001.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨剑,李伏欣,王珏.一种改进的局部切空间排列算法.软件学报,2005,16(9):1584-1590

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2004-11-26
  • 最后修改日期:2005-05-27
文章二维码
您是第19939286位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号