基于经验模式分解的汉字字体识别方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported bythe National Natural Science Foundation of China under Grant Nos.60133020,60475042(国家自然科学基金);the National Grand Fundamental Research 973 Program of China under Grant No.2004CB318000(国家重点基础研究发展规划(973));the Guangdong Provincial Natural Science Foundation of Guangdong Province of China under Grant No.036608(广东省自然科学基金);the Foundation of Scientific and Technological Planning Project of Guangzhou of China under Grant No.2003J1-C0201(广州市科技计划项目)


A Chinese Font Recognition Method Based on Empirical Mode Decomposition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于经验模式分解(empirical mode decomposition,简称EMD)的汉字字体识别方法.通过对大量汉字字体的研究比较,选取了能反映汉字字体基本特征的8种基本笔画.以这8种汉字笔画为模板,在汉字文档图像块中随机地抽取笔画信息,形成笔画特征序列.通过对笔画特征序列作EMD分解,提取每个笔画特征序列的高频能量,并结合汉字文档图像块的平均灰度,形成字体识别的一个9维特征.

    Abstract:

    This paper gives a novel approach to recognize Chinese fonts based on Empirical Mode Decomposition (EMD). By analyzing and comparing a great number of Chinese characters, 8 basic strokes are selected to characterize the structural attributes of Chinese fonts. Based on them, stroke feature sequences of each text block are calculated. Once decomposed by EMD, their first two intrinsic mode functions (IMFs), which are of the highest frequencies, are used to calculate the stroke energy of all the 8 basic strokes, forming the average of the energy of the two IMFs over the length of the sequence. To distinguish bold fonts from their regular fonts, average of the pixel's gray levels of the text is calculated and appended to the feature vector to form a 9 dimensional feature. Finally, the minimum distance classifier is used to recognize the fonts. Experiments show encouraging recognition rates.

    参考文献
    相似文献
    引证文献
引用本文

杨志华,齐东旭,杨力华,吴立军.基于经验模式分解的汉字字体识别方法.软件学报,2005,16(8):1438-1444

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2004-09-07
  • 最后修改日期:2005-03-11
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号