基于注意力模型的混合学习算法
作者:
基金项目:

Supported by the National Natural Science Foundation of Chinaunder GrantNo.60273083(国家自然科学基金)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了解决传统BP(back-propagation)算法收敛速度慢,训练得到的网络性能较差的问题,在借鉴生理学中"选择性注意力模型"的基础上,将遗传算法与误差放大的BP学习算法进行了有机的融合,提出了基于注意力模型的快速混合学习算法.该算法的核心在于将单独的BP训练过程划分为许多小的切片,并对每个切片进行误差放大的训练和竞争淘汰机制的选择.通过发现收敛速率较快的个体和过滤陷入局部极值的个体,来保证网络训练的成功率和实现快速向全局最优区域逼近的目的.仿真结果表明,该算法有效地解决了传统BP算法中由于初始权值的随机性造成的训练失败问题,并能有效解决饱和区域引起的后期训练缓慢问题,在不增加网络隐层节点数的情况下,显著地提高了网络的收敛精度和泛化能力.这将使神经网络在众多实际的分类问题上具有更广泛的应用前景.

    Abstract:

    A hybrid algorithm based on attention model (HAAM) is proposed to speed up the training of back-propagation neural networks and improve the performances. The algorithm combines the genetic algorithm with the BP algorithm based on magnified error signal. The key to this algorithm lies in the partition of the BP training process into many chips with each chip trained by the BP algorithm. The chips in the same iteration are optimized by the GA operators, and those in different iterations constitute the whole training. Therefore, the HAAM obtains the ability of searching the global optimum solution relying on these operations, and it is easy to be parallelly processed. The simulation experiments show that this algorithm can effectively avoid failure training caused by randomizing the initial weights and thresholds, and solve the slow convergence problem resulted from the Flat-Spots when the error signal becomes too small. Moreover, this algorithm improves the generalization of BP network by improving the training precision instead of adding hidden neurons.

    参考文献
    [1]Lu RQ. Knowledge Engineering & Knowledge Science of the Century. Beijing: Tsinghua University Press, 2001 (in Chinese).
    [2]Jin F. The Intelligence Basis of Neural Computing: Theory & Method. Chengdu: Southwest Jiaotong University Press, 2000 (in Chinese).
    [3]Yah PF, Zhang CS. Artificia Neural Network and Simulating-Evolution Computation. Beijing: Tsinghua University Press, 2000 (in Chinese).
    [4]Balakrishnan K, Honavar V. Improving convergence of back propagation by handling flat-spots in the output layer. In: Alek-Sander I, Taylor J, eds. Proc. of the 2nd Int'l Conf. on Artificial Neural Networks. Neural Networks, 1992,5:139-144.
    [5]Parekh R, Balakrishnan K, Honavor V. An empirical comparison of flat-spot elimination techniques in back-propagation networks.In: Proc. of the 3rd Workshop on Neural Networks-WNN'92. 1992.55-60.
    [6]Cong S. Neural Network, Fuzzy System & the Applications of Motion Control. Hefei: Press of University of Science and Technology of China, 2001 (in Chinese).
    [7]Lu RQ. Knowledge Science & Computing Science. Beijing: Tsinghua University Press, 2003 (in Chinese).
    [8]Yang B, Su XH, Wang YD. BP Neural network optimization based on an improved genetic algorithm. In: Yeung DS, Wang XZ,eds. Proc. of the 1st Int'l Conf. on Machine Learning and Cybernetics. Beijing: IEEE Press, 2002. 64-68.
    [9]Zhai YF, Li HY, Liu HB, Yuan XM. Method for optimizing initial weights of ANNs by Gas. Journal of Jilin University (Engineering and Technology Edition), 2003,33(2):45-50 (in Chinese with English abstract).
    [10]Yin JX, Chen SY, Qiu J. Neural network prediction model and its application based on GA and BP. Journal of Dalian University of Technology, 2002,42(5):594-598 (in Chinese with English abstract).
    [11]Zheng ZJ, Zheng SQ. Study on a mutation operator in evolving neural networks. Journal of Software, 2002,13(4):726-731 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/13/726.pdf
    [12]Tao Q, Cao JD, Sun DM, Fang TJ. A dynamic genetic algorithm based on the neural network with constraints. Journal of Software,2001,12(3):462-467 (in Chinese with English abstract).
    [13]Yang GJ, Cui PY, Li LL. Applying and realizing of genetic algorithm in neural networks control. Journal of System Simulation,2001,13(5):567-570 (in Chinese with English abstract).
    [14]Crich F. The Astonishing Hypothesis: The Scientific Search for the Soul. New York: Charles Scribner's Sons. 1994.
    [15]Treisman A. Features and objects in visual processing. Scientific American, 1986,(254):114-124.
    [16]2003. http://www.ahisee.com/content/attentlessay.html#TOC1
    [17]Guo AK. Computing Neuroscience. Shanghai: Shanghai Science and Technology Press, 2000.
    [18]Li Y, Kang Z. A two-level subspace evolutionary algorithm for solving multi-modal function optimization problems. Wuhan University Journal of Natural Sciences, 2003,8(1B):249-252.
    [19]Schaffer JD, Caruana RA, Eshelman LJ. Using genetic search to exploit the emergent behaviour of neural networks. Physica D 42,1990,42:244-248.
    [20]Zhang J, Liu KS, Wang XF. Immune modulated symbiontic evolution in neural network design. Journal of Computer Research &Development, 2000,37(8):924-930 (in Chinese with English abstract).
    [21]Skalak DB. Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: Cohen WW, Haym Hirsh, H, eds. Proc. of the Int'l Conf. on Machine Learning. Morgan Kaufmann Publishers, IEEE Press, 1994. 293-301.
    [22]Passerini A, Pontil M, Frasconi P. From margins to probabilities in multiclass learning problems. In: van Harmelen F, ed. Proc. of the 15th European Conf. on Artificial Intelligence, Lyon, France: IO S Press. 2002. 400-404.
    [23]Larsen J, Svarer C, Andersen LN, Hansen LK. Adaptive regularization in neural network modeling. In: Neural Networks: Tricks of the Trade, 1996.113-132.
    [24]陆汝钤.世纪之交的知识工程与知识科学.北京:清华大学出版社,2001.
    [25]靳蕃.神经计算智能基础·原理·方法.成都:西南交通大学出版社,2000.
    [26]阎平凡,张长水.人工神经网络与模拟进化计算.北京:清华大学出版社,2000.
    [27]丛爽.神经网络、模糊系统及其在运动控制中的应用.合肥:中国科学技术大学出版社,2001.
    [28]陆汝钤.知识科学与计算科学.北京:清华大学出版社,2003.
    [29]翟宜峰,李鸿雁,刘寒冰,苑希民.用遗传算法优化神经网络初始权重的方法.吉林大学学报(工学版),2003,33(2):45-50.
    [30]殷峻暹,陈守煜,邱菊.基于遗传与BP混合算法神经网络预测模型及应用.大连理工大学学报,2002,42(5):594-598.
    [31]郑志军,郑守淇.进化神经网络中的变异算子研究.软件学报,2002,13(4):726-731.http://www.jos.org.cn/1000-9825/13/726.pdf
    [32]陶卿,曹进德,孙德敏,方廷健.基于约束区域神经网络的动态遗传算法.软件学报,2001,12(3):462-467.
    [33]杨国军,崔平远,李琳琳.遗传算法在神经网络控制中的应用与实现.系统仿真学报,2001,13(5):567-570.
    [34]郭爱克.计算神经科学.上海:上海科技出版社,2000.
    [35]张军,刘克胜,王煦法.一种基于免疫调节和共生进化的神经网络优化设计方法.计算机研究与发展,2000,37(8):924-930.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨博,苏小红,王亚东.基于注意力模型的混合学习算法.软件学报,2005,16(6):1073-1080

复制
分享
文章指标
  • 点击次数:3837
  • 下载次数: 5695
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2003-11-04
  • 最后修改日期:2005-01-06
文章二维码
您是第19867854位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号