一种建立粗糙数据模型的监督模糊聚类方法
作者:
基金项目:

Supported by the National Grand Fundamental Research 973 Program of China under Grant No.2002cb312200(国家重点基础研究发展规划(973));the Natural Science Foundation of Heilongjiang Province of China under Grant No.F0316(黑龙江省自然科学基金);the China Postdoctoral Science Foundation under Grant No.2004036321(中国博士后科学基金)


An Approach to Building Rough Data Model Through Supervised Fuzzy Clustering
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出了在输入-输出积空间中利用监督模糊聚类技术快速建立粗糙数据模型(rough data model,简称RDM)的一种方法.该方法将RDM模型的分类质量性能指标与具有良好特性的Gustafson-Kessel(G-K)聚类算法结合在一起,并通过引入数据对模糊类的推定隶属度的概念,给出了将模糊聚类模型转化为粗糙数据模型的方法,从而设计出一种通过迭代计算使目标函数最小的两个必要条件方程来获取RDM模型的有效算法,将Kowalczyk方法的多维搜索过程变为以聚类数目为参数的一维搜索,极大地减少了寻优时间.与传统的粗糙集理论和Kowalczyk方法相比,提出的方法具有更好的数据概括能力和噪声数据处理能力.最后,通过不同的数据集实验测试,结果表明了该方法的有效性.

    Abstract:

    A new method for fast building the rough data model (RDM) by means of supervised fuzzy clustering in the product space of input and output variables is proposed. The approach incorporates the RDM’s classification quality performance index with Gustafson-Kessel (GK) clustering algorithm and is of many good properties. The way to convert the fuzzy cluster models to rough data models by introducing the concept of putative membership degree of a data point to a fuzzy cluster is suggested. Hence, an efficient algorithm that can obtain RDMs by just iteratively computing two necessary condition equations is worked out. It minimizes the objective function and turns the multi-dimensional search process of the Kowalczyk’s method to one dimensional search strategy (in terms of the number of clusters). This technique reduces the searching time greatly. Compared with the traditional rough set theory and the Kowalczyk’s method, the approach has more powerful ability to handle data contaminated by noise and better generalization ability. Finally, different examples of data sets illustrate the effectiveness of the approach.

    参考文献
    [1]Pawlak Z. Rough Set: Theoretical Aspects of Reasoning about Data Boston: Kluwer Publishers, 1991.
    [2]Skowron A, Peters J F. Rough sets: Trends and challenges. In: Wang G, Liu Q, Yao Y, Skowron A, eds. Rough Sets, Fuzzy Sets,Data Mining and Granular Computing. LNAI 2639, Berlin, Heidelberg: Springer-Verlag, 2003.25-34.
    [3]Tsumoto S. Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model. Information Sciences,2004,162(2) :65-80.
    [4]Peters JF, Skowron A. A rough sets approach to knowledge discovery. International Journal of Intelligent Systems, 2002,17(2):109-112.
    [5]Huang C-C, Tseng T-L. Rough set approach to case-based reasoning application. Expert Systems with Applications, 2004,26(3):369-385.
    [6]Polkowski L. Toward rough set foundations-mereological approach. In: Tsumoto S, Slowinski R, Komorowski HJ, Grzymala-Busse JW, eds. Rough Sets and Current Trends in Computing. LNAI 3066, Berlin, Heidelberg: Springer-Verlag, 2004. 8-25.
    [7]Peters JF, Skowron A, Synak P, Ramanna S. Rough sets and information granulation. LNCS 2715, Heidelberg: Springer-Verlag,2003. 370-377.
    [8]Zhang WX, Wu WZ, Liang JY, Li DY. Rough Set Theory and Methodology. Beijing: Science Press, 2001 (in Chinese).
    [9]Han JC, Hu XH, Nick C. Supervised learning: A generalized rough set approach. In: Ziarko W, Yao Y, eds. Rough Sets and Current Trends in Computing. LNAI 2005, Heidelberg: Springer-Verlag, 2001. 322-329.
    [10]Slowinski R, Vanderpooten D. A generalized definition of rough approximations based on similarity. IEEE Trans. on Knowledge and Data Engineering, 2000,12(2):331-336.
    [11]Inuiguchi M, Tanino T. On rough sets under generalized equivalence relations. In: Terano T, Nishida T, Namatame A, Tsumoto S,Ohsawa Y, Washio T, eds. New Frontiers in Artificial Intelligence: Joint JSAI 2001 Workshop Post-Proc. LNAI 2253, Heidelberg:Springer-Verlag, 2001. 295-300.
    [12]Yao YY. Generalized rough set models. In: Polkowski L, Skowron A, eds. Rough Sets in Knowledge Discovery 1-Methodology and Applications. Heidelberg: Physica-Verlag, 1998.287-318.
    [13]Yao YY. On generalizing rough set theory. In: Wang G, Liu Q, Yao Y, Skowron A, eds. Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. LNAI 2639, Berlin, Heidelberg: Springer-Verlag, 2003.44-51.
    [14]Ziarko W. Variable precision rough sets model. Journal of Computer and System Sciences, 1993,46(1):39-59.
    [15]Kowalczyk W. Rough data modeling: A new technique for analyzing data. In: Polkowski L, Skowron A, eds. Rough Sets in Knowledge Discovery 1: Methodology and Applications. Heidelberg: Physica-Verlag, 1998.400-421.
    [16]Pal SK, Skowron A. Rough-Fuzzy hybridization: A new trend in decision-making. Singapore: Springer-Verlag, 1999.
    [17]Inuiguchi M. Generalizations of rough sets: From crisp to fuzzy cases. In: Tsumoto S, Slowinski R, Komorowski HJ,Grzymala-Busse JW, eds. Rough Sets and Current Trends in Computing. LNAI 3066, Berlin, Heidelberg: Springer-Verlag, 2004.26-37.
    [18]Eiben AE, Euverman TJ, Kowzlczyk W, Slisser F. Modeling customer retention with statistical techniques, rough data models, and genetic programming. In: Pal SK, Skowron A, eds. Rough-Fuzzy Hybridization: A New Trend in Decision-Making. Singapore:Springer-Verlag, 1999. 330-345.
    [19]Hoppner F, Klawonn F, Kruse R, Runkler T. Fuzzy Cluster Analysis. Chichester: John Wiley & Sons Ltd., 1999.
    [20]Merz CJ, Murphy PM. UCI Repository of machine learning databases. Irvine: Department of Information and Computer Science,University of California, 2004. http://www.ics.uci.edu/~mlearn/MLRepository.html
    [21]张文修,吴伟志,梁吉业,李德玉.粗糙集理论与方法.北京:科学出版社,2001.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄金杰,李士勇,蔡云泽.一种建立粗糙数据模型的监督模糊聚类方法.软件学报,2005,16(5):744-753

复制
分享
文章指标
  • 点击次数:3837
  • 下载次数: 5177
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2003-07-28
  • 最后修改日期:2004-09-08
文章二维码
您是第19784123位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号