彩色图像边缘特征及其人脸检测性能评价
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the Natural Science Foundation of Fujian Province of China under GrantNo.A0210017(福建省自然科学基金);the International Science and Technology Cooperation Project of Fujian Province of China under Grant No.2004I014(福建省国际科技合作项目)


Edge Features in Color Image and Their Face Detection Performance Evaluation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    介绍了一种有效的彩色图像边缘特征提取算法,提出了一种新的边缘方向编码--双轴对称方向编码,利用多重交叉验证的ROC(receiver operating characteristic)曲线对基于颜色及其边缘直方图的SVM(support vector machine)人脸检测进行平均性能评价.实验结果表明,图像颜色边缘特征比灰度边缘特征具有明显优势.通过分别与RGB三色直方图线性拼接,新的双轴对称边缘方向编码表现出比传统方向编码更好的SVM分类性能.利用颜色及其边缘直方图特征能够明显提高人脸检测性能,分辨出不同光照条件下、不同表情甚至部分遮挡的非深度旋转的彩色人脸.

    Abstract:

    This paper introduces an effective algorithm for color edge features extraction and proposes a novel edge orientation encoding, biaxial symmetry orientation encoding. The average performance of human face detection system, which is based on the support vector classifier using the histograms of color and color edge features, is evaluated with ROC in multi_fold cross validation. Experimental results show that color edge features outperform gray edge features evidently; the classification accuracy of the novel edge orientation coding outperforms the traditional edge orientation coding when they are linearly combined with color histogram respectively; the face detection accuracy can be significantly improved when both color and color edge histograms are used, non-deep rotated human face can be correctly detected in color image under different illuminations, with different expressions and partial occlusions.

    参考文献
    相似文献
    引证文献
引用本文

陈锻生,刘政凯.彩色图像边缘特征及其人脸检测性能评价.软件学报,2005,16(5):727-732

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2004-03-03
  • 最后修改日期:2004-10-10
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号