基于样例学习的面部特征自动标定算法
作者:
基金项目:

Supported bythe National Natural Science Foundation of China under Grant No.60332010(国家自然科学基金);the"100 Talents Program"of the Chinese Academy of Sciences(中国科学院"百人计划");the Shanghai Municipal Sciences and Technology Committee uder Grant No.03DZ15013(上海市科委资助项目);the ISVISION Technologies Co.,Ltd(银晨智能识别科技有限公司资金资助)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    面部特征标定是人脸识别中的一个关键问题.提出了一种基于样例学习的面部特征自动标定(人脸形状自动提取)方法.该方法是基于下面假设提出来的:人脸图像差和形状差之间存在一种近似的线性关系--相似的人脸图像在较大程度上蕴涵着相似的形状.因此,给定标注了特征点的人脸图像学习集,则任意新的输入人脸图像的面部形状可以采用如下方法估计:测量该人脸图像和训练集中图像的相似度,并将同样的相似度用于该人脸图像形状的重建.即:如果输入人脸图像可以表示为训练图像的优化的线性组合,那么同样的线性组合系数就可以直接用于训练集对应形状的线性组合从而得到输入人脸图像的形状.实验表明,该算法相对于其他传统的特征标定算法具有可比的精度和较快的速度.并且,还将此算法扩展到了多姿态情况下,实现了多姿态人脸图像形状的自动提取.

    Abstract:

    In this paper, a novel example-based automatic face alignment strategy has been proposed for facial features alignment, i.e. facial shape extracting. The method is motivated by an intuitive and experimental observation that there exists an approximate linearity relationship between the image intensity difference and the shape difference, that is, similar face image intensity distribution implies similar face shape. Therefore, given a learning set of face images with their corresponding face landmarks labeled, the shape of any other face image can be learned by estimating its similarities to the training images in the learning set and applying these similarities to the shape reconstruction of the unknown face image. Concretely, if the unknown face image is expressed by an optimal linear combination of the training images, the same linear combination coefficients can be directly applied to the linear combination of the corresponding training shapes to construct the optimal shape for the novel face image. Experiments have shown that, compared with traditional methods, the proposed method can achieve a comparable alignment accuracy in less time. Furthermore, the same strategy has been extended to extract the shape of face images with varying poses.

    参考文献
    [1]Chellappa R, Wilson CL, Sirohey S. Human and machine recognition of faces: A survey. Proc. of the IEEE, 1995,83(5):705-741.
    [2]Zhao WY, Chellappa R, Phillips PJ, Rosenfeld A. Face recognition: A literature survey. ACM Computing Surveys (CSUR), 2003,35(4):399-458.
    [3]Cootes TF, Taylor CJ, Cooper D, Graham J. Active shape models-their training and applications. Computer Vision and Image Understanding, 1995,61(1):38-59.
    [4]Cootes TF, Edwards GJ, Taylor CJ. Active appearance models. In: Proc. of the European Conf. of Computer Vision. London:Springer-Verlag, 1998,2:484-498.
    [5]Cootes TF, Wheeler GV, Walker KN, Taylor CJ. View-Based active appearance models. In: Proc. of the 4th IEEE Int'l Conf. on Automatic Face and Gesture Recognition. Washington: IEEE Computer Society, 2000. 227-238.
    [6]Li SZ, Yan SC, Zhang HJ, Cheng QS. Multi-View face alignment using direct appearance models. In: Proc. of the Conf. on Automatic Face and Gesture Recognition. Washington: IEEE Computer Society, 2002. 324-329.
    [7]Yan SC, Liu C, Li SZ, Zhang HJ, Shum HY, Cheng QS. Face alignment using texture-constrained active shape models. Image and Vision Computing, 2003,21(1):69-75.
    [8]Zhou Y, Gu L, Zhang HJ. Bayesian tangent shape model estimating shape and pose parameters via Bayesian inference. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Wisconsin, 2003. 16-22.
    [9]Beymer D, Poggio T. Face recognition from one example view. In: Proc. of the 5th Int'l Conf. on Computer Vision. Massachusetts:IEEE Computer Society, 1995. 500-507.
    [10]Beymer D. Vectorizing face images by interleaving shape and texture computation. Technical Report AIM-1536, MA: MIT Artificial Intelligence Laboratory, 1995.
    [11]Miao J, Yin BC, Wang KQ, Shen LS, Chen XC. A hierarchical multiscale and multiangle system for human face detection in a complex background using gravity-center template. Pattern Recognition, 1999,32(7): 1237-1248.
    [12]Cao B, Shan SG, Gao W. Localizing the iris center by region growing search. In: Proc. of the Int'l Conf. on Multimedia and Expo.IEEE Computer Society, 2002. 129-132.
    [13]Beymer D, Poggio T. Image representations for visual learning. Science, 1995,272:1905-1909.
    [14]Vetter T, Poggio T. Linear object classes and image synthesis from a single example image. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997,19(7):733-742.
    [15]Gao W, Cao B, Shan SG, Zhou DL, Zhang XH, Zhao DB. The CAS-PEAL large-scale Chinese face database and evaluation protocols. Technical Report, No. JDL TR 04 FR 001. Beijing: Joint Research & Development Laboratory, the Chinese Academy of Sciences, 2004. http://www.jdl.ac.cn
    [16]Hyoja-Dong, Nam-Gu. Asian face image database PF01. Technical Report, Pohang University of Science and Technology, 2001.http://nova.postech.ac.kr/archives/imdb.html
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

柴秀娟,山世光,高文,陈熙霖.基于样例学习的面部特征自动标定算法.软件学报,2005,16(5):718-726

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2004-04-09
  • 最后修改日期:2004-06-11
文章二维码
您是第19946155位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号