基于主动判别函数的手写体识别
作者:
基金项目:

Supported by the Foundation of Harbin City for the Intellectual, Heilongjiang Province of Chinaunder Grant No.2004AFXXJ053(哈尔滨市后备人才基金项目)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了一种新的基于主动判别函数的手写体识别方法.首先,提出了主子空间中基于统计特征的主动原型模板并给出了对应于待识模式的最优主动原型模板.然后,提出了主动判别函数,它是两个加权距离之和;其中一个是待识模式与主子空间的距离,另一个是待识模式与次子空间的距离.其次,作为主动判别函数的参数,主动原型模板的约束可应用最小分类错误准则进行优化,这一最优约束有助于提高主动判别函数的识别正确率.最后,在银行票据中使用的手写金融汉字样本库上进行实验.实验结果表明,主动判别函数在手写体识别方面是非常有前景的.

    Abstract:

    A novel recognition method called Active Discriminant Function (ADF) for handwriting recognition is presented. First, statistical feature based Active Prototype Model (APM) in the principal subspace is proposed and an optimal APM corresponding to an unknown pattern is obtained. Second, ADF that is a weighted summation of two distances is proposed. One measures the distance between an unknown pattern and the principal subspace; the other measures the distance between an unknown pattern and the minor subspace. Third, as parameters of ADF, constraints for APM are optimized by applying Minimum Classification Error (MCE) criterion. The optimal constraints help to improve recognition accuracy of ADF. Finally, experiments are conducted on handwritten financial Chinese characters used in bank bill, and empirical results demonstrate that ADF is fairly promising for handwriting recognition.

    参考文献
    [1]Plamondon R, Srihari SN. On-Line and off-line handwriting recognition: a comprehensive survey. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,22(1):63-84.
    [2]Liu CL, Nakashima K, Sako H, Hiromichi F. Handwritten digit recognition: Benchmarking of state of the art techniques. Patten.Recognition, 2003,36:2271-2285.
    [3]Gao X, Jin LW, Yin JX, Huang JC. A new SVM-based handwritten Chinese character recognition. Chinese Journal of Electronics,2002,30(5):651-654 (in Chinese with English abstract).
    [4]Kim IJ, Kim JH. Statistical character structural modeling and its application to handwritten Chinese character recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(11):1422-1436.
    [5]Kimura F, Takashina K, Tsuruoka S, et al. Modified quadratic discriminant functions and the applications to Chinese character recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1987,9(1):149-153.
    [6]Shi D, Gunn SR, Damper RI. Handwritten Chinese radical recognition using nonlinear active shape models. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(2):277-280.
    [7]Shi D, Gunn SR, Damper RI. Handwritten Chinese character recognition using nonlnear active shape models and viterbi algorithm.Pattern Recognition Letters, 2002,23:1853-1862.
    [8]Shi D, Gunn SR, Damper RI. A radical approach to handwritten Chinese character recognition using activehandwriting models. In:Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Kauai, Hawaii, 2001. 670-675.
    [9]Tang YY, Tu LT, Liu JM, Lee SW, Lin WW, Shyu IS. Offline recognition of Chinese handwriting by multifeature and multi-level classification. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998,20(5):556-561.
    [10]Kimura F, Wakabayashi T, Tsuruoka S, Miyake Y. Improvement of handwritten Japanese character recognition using weighted direction code histogram. Pattern Recognition, 1997,30(8):1329-1337.
    [11]Kato N, Suzuki M, Omachi S, Aso H, Nemoto Y. A handwritten character recognition system using directional element feature and asymmetric Mahalanobis distance. IEEE Trans. on Pattern Analysis and Machine Intelligence 1999,21(3):258-262.
    [12]Duda R, Hart P, Stork DG. Pattern Classification. 2nd ed., New York: John Wiley and Sons Inc, 2001.
    [13]Juang BH, Katagiri S. Discriminative learning for minimum error classification. IEEE Trans. on Signal Processing, 1992,40(12):3043-3054.
    [14]Katagiri S, Juang BH, Lee CH. Pattern recognition using a family of design algorithm based upon the generalized probabilistic descent method. Proceedings of the IEEE, 1998,86(11):2345-2372.
    [15]Lee SW, Park JS. Nonlinear shape normalization methods for the recognition of large-set handwritten characters. Pattern Recognition, 1994,27(7):895-902.
    [16]Wakabayashi T, Tsuruoka S, Kimura F, Miyake Y. On the size and variable transformation of feature vector for handwritten character recognition. Trans IEICE Japan, 1996,J76-D-Ⅱ(12):2495-2503.
    [3]高学,金连文,尹俊勋,黄建成.一种基于支持向量机的手写汉字识别方法.电子学报,2002,30(5):651-654.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙广玲,刘家锋,唐降龙,石大明,赵巍.基于主动判别函数的手写体识别.软件学报,2005,16(4):523-532

复制
分享
文章指标
  • 点击次数:4348
  • 下载次数: 4851
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2003-12-29
  • 最后修改日期:2004-11-03
文章二维码
您是第19945876位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号