基于FP-Tree有效挖掘最大频繁项集
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.90104026, 60073001 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2002AA144040 (国家高技术研究发展计划(863))


Efficiently Mining of Maximal Frequent Item Sets Based on FP-Tree
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    最大频繁项集的挖掘过程中,在最小支持度较小的情况下,超集检测是算法的主要耗时操作.提出了最大频繁项集挖掘算法FPMFI(frequent pattern tree for maximal frequent item set)使用基于投影进行超集检测的机制,有效地缩减了超集检测的时间.另外,算法FPMFI通过删除FP子树(conditional frequent pattern tree)的冗余信息,有效地压缩了FP子树的规模,减少了遍历的开销.分析表明,算法FPMFI具有优越性.实验比较说明,在最小支持度较小时,算法FPMFI的性能优于同类算法1倍以上.

    Abstract:

    During the process of mining maximal frequent item sets, when minimum support is little, superset checking is a kind of time-consuming and frequent operation in the mining algorithm. In this paper, a new algorithm FPMFI (frequent pattern tree for maximal frequent item sets) for mining maximal frequent item sets is proposed. It adopts a new superset checking method based on projection of the maximal frequent item sets, which efficiently reduces the cost of superset checking. In addition, FPMFI also compresses the conditional FP-Tree (frequent pattern tree) greatly by deleting the redundant information, which can reduce the cost of accessing the tree. It is proved by theoretical analysis that FPMFI has superiority and it is revealed by experimental comparison that the performance of FPMFI is superior to that of the similar algorithm based on FP-Tree more than one time.

    参考文献
    相似文献
    引证文献
引用本文

颜跃进,李舟军,陈火旺.基于FP-Tree有效挖掘最大频繁项集.软件学报,2005,16(2):215-222

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2004-01-06
  • 最后修改日期:2004-06-10
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号