局部调整插值点的三次样条曲线表示
作者:
基金项目:

Supported by the Natural Science Foundation of Hunan Province of China under Grant No.01JJY2095(湖南省自然科学基金)


Cubic Spline Curve Representation Based on Local Adjusting Interpolation Points
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    给出了带局部形状参数的三次样条曲线生成方法.所给方法以Hermite型插值曲线和非均匀三次B样条曲线为特殊情形,将插值于控制点的曲线和逼近于控制多边形的非均匀B样条曲线统一起来.一个形状参数只影响两条曲线段,曲线表达式保持了三次Bezier曲线表达式的简单结构.改变形状参数的值或调整Bezier控制点,可以局部调整曲线的形状.基于所给样条曲线,给出了带局部形状参数的双三次样条曲面.

    Abstract:

    A method of generating cubic spline curves with local shape parameters is presented in this paper.The given method takes the Hermite interpolation curvcs and the cubic non-uniform B-spline curves as the special cases and unifies the representation of the curves interpolating the control polygon and the cubic non-uniform B-spline curves approximating the control polygon.A shape parameter only influences two curve segments,and the expression of the curves retains the simple construction of the expression of the cubic Bezier curves.We can adjust the shape of the curves locally by changing the values of the shape parameters or adjusting the Bezier control points.Based on the given spline curves,the bicubic spline surfaces with local shape parameters are given.

    参考文献
    [1] Barsky BA.Computer Graphics and Geometric Modeling Using Beta-Spline.Heidelberg:Springer-Verlag, 1988.
    [2] Gregory JA,Sarfraz M.A rational cubic spline with tension.Computer Aided Geometric Design,1990,7(9):1~13.
    [3] Yves M,et al.A shapc control fitting method for Bezier curves.Computer Aided Geometric Design,1998,15(9):879~891.
    [4] Han XL.Quadratic trigonometric polynomial curves with a shape parameter.Computer Aided Geometric Design,2002,19(7):503~512.
    [5] Han XL,Liu SJ.An extension of the cubic uniform B-spline curve.Journal of Computer-Aided Design and Computer Graphics,2003,15(5):576~578(in Chinese with English abstract).
    [6] Piegl L, Modifying the shape of rational B-spline,Part I:Curves.Computer Aided Design,1989,21:509~518.
    [7] Piegl L,Tiller W.The NURBS Book.New York:Springer-Verlag,1995.
    [8] Sdnchez-Reyes J.A simple technique for NURBS shape modification.IEEE Computer Graphics and Application,1997,17:52~59.
    [9] Imre J.Weight-Based shape modification ofNURBS curves.Computer Aided Geometric Design,1999,16(5):377~383.
    [10] Lei KB.Shape control for rational cubic uniform B-spline curves.Journal of Computer-Aided Design and Computer Graphics,2000,12(8):601~604(in Chinese with English abstract).
    [11] Peter C.An interpolating piecewise bicubic surface with shape parameters.Computer and Graphics,2001,25(3):463~481. 附中文参考文献:
    [5] 韩旭里,刘圣军.三次均匀B样条曲线的扩展.计算机辅助设计与图形学学报,2003,15(5):576~578.
    [10] 雷开彬.有理三次均匀B样条曲线的形状控制.计算机辅助设计与图形学学报,2000,12(8):601~604.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩旭里,朱承学.局部调整插值点的三次样条曲线表示.软件学报,2004,15(zk):273-176

复制
分享
文章指标
  • 点击次数:4763
  • 下载次数: 4779
  • HTML阅读次数: 0
  • 引用次数: 0
历史
文章二维码
您是第19783460位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号