基于近似几何误差的动态隐式曲线重构
作者:
基金项目:

Supported by the National Natural Science Foundaton of China under Grant NO.10201030(国家自然科学基金);the National Science Fund for Distinguished Young Scholars under Grant No 60225002 (国家杰出青年基金);the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.20010358003(国家教育部博士点基金);the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE,China(国家教育部高校优秀青年教师教学科研奖励计划):the Research Foundation for Young Scholars in University of Science and Technology of China under Grant No.kb0122(中国科学技术大学青年基金)


Dynamic Implicit Curve ReconstructiOn Based On Approximate Geometric Distance
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [9]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出一种以代数张量积样条曲线作为几何表示形式,基于近似几何误差和薄板能量极小化的隐式重构模型.同时结合最优化理论中的信赖域思想,给出自适应的迭代求解算法及其实现.这种方法采取无代价初始化技术,通过迭代能稳定地达到目标点集的高质量重构,特别是对复杂形状的目标,具有很强的处理能力.

    Abstract:

    An implicit Curve reconstruction method is proposed which represents the curve with all algebraic tensor-product B-spline,and minimizes the tension ofthe B-spline and the approximate geometric distance between the curve and the point set.The method is dynamic and self-adaptive based on trust-region algorithm in optimization theory.The specification of the initial shape is priceless,and the high-quality reconstruction corvc is obtained in a robust way.Some examples are implemented.

    参考文献
    [1] Kass M,Witkin A,Terzopouios D.Snakes:Active contourmodels.International Journal of Computer Vision,1988,1(4):321~331.
    [2] Blake A,lsard M.Active Contours.New York:springer-Verlag,1998.
    [3] Pottmann H,Hofer M,Geometry of the squared distance function to curves and surfaces.Technical Report,Institute of Geometry,Vienna University of Technology,2002.
    [4] Pottmaml H,Leopoldseder S,Hofer M,Approximation with active B-apline curves and srufaces.In:Proc. of Pacitic Graphics 2002IEEE Press.8~25.
    [5] Wang WP.B-Spline curve approximation using SDM Technical Report,Computer Science Department,Hong Kong University,2003.
    [6] Yang HP,Wang W,Sun JG.Control potht adjusUnent for B-spline curve approximation.Computor-Aided Design.2004,36(7):639~652.
    [7] Pratt V.Direct least-squares fitting of algebraic surface ACM Computer Graphics,1987,21(4):145~152.
    [8] Taubin R. Estimation ofplanar curves,surfaces.and non-planar space curves defined by implicit equations with applications to edge and rangeimage segmentation IEEETrans on Pattern Analysis and Machine Intelligence.1991.13(11):1115~1138.
    [9] Osher S,Sethian J.Fronts propagating with curvature depeodent speed, algorithms based on a Hamilton-Jocobi formulation.Journal of Computational Physics,1988。79(1):12~49. [1O] Sclhian JA.Level SetMethods and Fast Marching Methods. Cambridge University Press,1999. [11] Osher S,Fedckiw R. Level set methods and dynamic implicit SllFfaces.New York:Sprlnger-Verlag,2003. [12] Zhan HK,Osher S,Memmaa B,Kan8 M.Implicit and nonparametric shape reconstruction from unorganized date using a variational level set method.Computer Vision and Image Understanding,2000,80(3):295~314. [13] Foster N,Fedkiw R.Practical animation of liqnids In:Proc. of SIGGRAPH 2001.15~22. [14] Jfittler B,Fells A.Least-Squares fitting of algebraic spline surfaces.Advances in Computational Mathematics,2002,17(1-2):135~152. [15] Jfittler B. Approximate implicitization via etllVC fitting. In:Eurographics Symp.on Geometry Processing,2003 [16] Farin G Curves and Surfaces for CAGD—A Practical Guide.5th ed,Morgan Kaufmarm Publishers,Ine.,2002 [17] Bloomenthal J,et al.Introduction to Implicit Surfaces.Morgan Kaufmann Publishers, Inc.1998. [18] Sampson PD.FiRing conic sectionsto very scaHereddata:Aniterative refinement of the Bookstein algorithm Computer Graphics and Image Processing,1982,18:97~108. [19] Bajaj C, Ihm I,Warren J Higher-Order interpolation and least-squares approximation using implicit algebraic surfaces,ACM Trans.on Graphics,1993,12(4):327~347. [20] de Boor C.A Practical Guide to Splines.New York:Springer-Voting,2001. [21] Powell MJD. On the global convergence of trust region algorithms for unconstrained optimization. Mathematical Programming,1984.29:297~303. [22] Mangasarlan OL.Nonlinear Programming.Now York:McGraw-Hill,1969.92~112.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨周旺,邓建松,陈发来.基于近似几何误差的动态隐式曲线重构.软件学报,2004,15(zk):264-272

复制
分享
文章指标
  • 点击次数:3343
  • 下载次数: 4504
  • HTML阅读次数: 0
  • 引用次数: 0
历史
文章二维码
您是第19829812位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号