一种纹理图像分割方法--分开-扩张方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


A Segmentation Approach to Texture Images: Split-and-Expand Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对分开-合并方法分割纹理图像存在的纹理特征不规则性的问题,提出了一种新的基于四分树的分开-扩张的区域分割方法.通过对各类别的不同测量区域的纹理样品进行监督分类,确定分割的初始区域和终止区域,并把样品分类的精度作为各测量区域的纹理特征的权值,根据是否满足一致性属性和区域的性质进行分开或扩张.该方法较好地处理了不同测量区域的纹理特征可信度不一致的问题,扩张的过程可提高分割的精度并避免小区域纹理特征的不稳定.实验结果表明,分开-扩张方法能有效地分割纹理图像,其分割精度优于分开-合并方法.

    Abstract:

    In order to overcome the problem of irregularity of texture features when using the split-and-merge algorithm to segment texture images, the split-and-expand algorithm, a new quadtree-based texture segmentation approach, is presented in this paper. The initial and final regions to be segmented are determined by supervisedly classifying the texture samples of the different regions to be evaluated, and the precision of classification is treated as the weights of the texture features in the corresponding evaluated regions. Then the operation of spliting or expanding is performed according to whether the properties of consistency are satisfied or not. The method can effectively deal with the problem of inconsistent reliability of texture property in different evaluated regions, and the process of expansion can improve the precision of segmentation and avoid the instability of texture features in smaller regions. The results show that the split-and-expand algorithm can effectively segment texture images, and its precision of classification is superior to that of the split-and-merge algorithm.

    参考文献
    相似文献
    引证文献
引用本文

林剑,鲍光淑,肖志强,林强.一种纹理图像分割方法--分开-扩张方法.软件学报,2004,15(4):624-632

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2002-12-16
  • 最后修改日期:2003-06-19
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号