参数曲面上的插值与混合
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.69833020 (国家自然科学基金); the Natural Science Foundation of Jiangsu Province of China under Grant No. BK2001408 (江苏省自然科学基金)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    如何表示曲面上的曲线,在处理诸如数控加工中的路径设计以及CAD/CAM等领域频繁出现的曲面裁剪问题时显得日益重要.给出了数据点的切方向(切方向及曲率向量或测地曲率值)指定而G1连续(G2连续)插值曲面上任意点列的方法.作为曲面上曲线插值问题的特例,还讨论了曲面上曲线的混合问题.基本思想是借助于微分几何的有关结论,曲面上曲线的插值问题被转化为其参数平面上类似的曲线插值问题.该方法能够用二维隐式方程来表示曲面上的插值曲线,从而把在显示该曲线时所面对的曲面求交的几何问题转化为计算隐式曲线的代数问题.实验证明该方法是可行的,而且适用于CAD/CAM及计算机图形学等领域.

    Abstract:

    Representing a curve contained in a surface is very important in dealing with path generation in computer numerical control (CNC) machining and the trimming issues that frequently occur in the field of CAD/CAM. This paper develops methods for tangent direction continuous (G1) and both tangent direction and curvature continuous (G2) interpolation of a range of points on surface with specified tangent and either a curvature vector or a geodesic curvature at every point. As a special case of the interpolation, the blending problems of curves on surface are also discussed. The basic idea is as follows: with the help of the related results of differential geometry, the problem of interpolating curve on a parametric surface is converted to a similar one on its parametric plane. The methods can express the G1 and G2 interpolation curve of an arbitrary sequence of points on a parametric surface in a 2D implicit form, which transforms the geometric problem of surface intersection, usually a troublesome issue, into the algebraic problem of computing an implicit curve in displaying such an interpolation curve. Experimental results show the presented methods are feasible and applicable to CAD/CAM and Computer Graphics.

    参考文献
    [1]Pobegailo AP. Spherical splines and orientation interpolation. The Visual Computer, 1994,11(2):63~68.
    [2]Dietz R, Hoschek J, Juttler B. Rational patches on quadric surfaces. Computer Aided Design, 1995,27(1):27~40.
    [3]Hartmann E. G2 interpolation and blending on surfaces. The Visual Computer, 1996,12(4): 181~192.
    [4]Zhang H. Algorithm of C1 interpolation restricted on smooth surface. Journal of Computer Aided Design and Computer Graphics,1997,9(5):385~390 (in Chinese with English abstract).
    [5]Lin H, Wang G. G1 interpolation curve on smooth surface. In: Zhang CM, ed. Proc. of CSIAM (China Society of Industrial and Applied Mathematics) Geometric Design & Computing 2002. Qindao: Petroleum University Press, 2002, 50~53 (in Chinese with English abstract).
    [6]Kumar S, Manocha D. Efficient rendering of trimmed NURBS surfaces. Computer Aided Design, 1995,27(7):509521.
    [7]Piegl L, Tiller W. Geometry-Based triangulation of trimmed NURBS surfaces. Computer Aided Design,1998,31(1):11~18.
    [8]Do Carmo MP. Differential Geometry of Curves and Surfaces. Englewood Cliffs: Prentice-Hall, Inc. 1976.
    [9]Li J, Hoschek J, Hartmann E. Gn-1 functional splines for interpolation and approximation of curves, surfaces and solids.Computer Aided Geometric Design, 1990,7(2):209~220.
    [10]Hu SM, Sun JG, Jin TG, et al. Computing the parameters of points on NURBS curves and surfaces viamoving affine frame method.Journal of Software, 2000,11 (1):49~53 (in Chinese with English abstract).
    [11]Sederberg TW. Algebraic geometry for computer aided geometric desgn. IEEE Computer Graphics and Applications, 1986,6(1):52~59.
    [12]Hoffmann CM. Implicit curves and surfaces in CAGD. IEEE Computer Graphics and Applications, 1993,13(1):79~88.
    [13]Sederberg TW, Anderson DC, Goldman RN. Implicit representation of parametric curvesand surfaces. Computer Vision, Graphics and Image Processing, 1984,28(1):72~84.
    [14]De Montaudouin Y, Tiller W, Vold H. Applications of power series in computational geometry. Computer Aided Design, 1986,18(10):514~524.
    [15]De Montaudouin Y. Resolution of P(x,y)=0. Computer Aided Design, 1991,23(9):653~654.
    [16]Bajaj CL, Hoffmann CM, Lynch RE,et al. Tracing surface intersections. Computer Aided Geometric Design, 1988,5(4):285~307.
    [17]Wang XP, Ye ZL, Meng YQ, Li HD. Space deformation of parametric surfaces based on extosion function. International Journal of CAD/CAM, 2002,1 (1):23~32.
    [18]张怀.限制光滑曲面上的C1曲线插值方法.计算机辅助设计与图形学学报,1997,9(5):385~390.
    [19]蔺宏伟,王国瑾.光滑曲面上的G1插值曲线.第1届全国几何设计与计算学术会议论文集,青岛:石油大学出版社,2002.50~53.
    [20]胡事民,孙家广,金通光,汪国昭.基于活动仿射标架反求Nurbs曲线/曲面参数.软件学报,2000,11(1):49~53.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王小平,周儒荣,余湛悦,叶正麟.参数曲面上的插值与混合.软件学报,2004,15(3):451-460

复制
分享
文章指标
  • 点击次数:4291
  • 下载次数: 5309
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2003-05-21
  • 最后修改日期:2003-11-13
文章二维码
您是第19793870位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号