基于小波域局部高斯模型的图像复原
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60272042,10171007(国家自然科学基金)


Image Restoration Based on Wavelet-Domain Local Gaussian Model
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    图像复原的目的是将原始图像从观测到的降析图像中恢复出来.提出了一种基于小波域局部高斯模型的线性图像复原算法.小波域局部高斯模型采用高斯函数刻画子带系数的局部概率分布,由于这一模型具有很好的局部自适应性,并能正确地反映图像的局部结构信息,因此算法以此作为自然图像的先验模型,把图像复原问题转化为一个约束优化问题并用共轭梯度法对其进行求解.实验结果表明,基于小波域局部高斯模型的图像复原算法较好地再现了各种边缘信息,复原出的图像在信噪比和主观视觉效果方面都有显著的提高.

    Abstract:

    The aim of image restoration is to recover the original uncorrupted images from noisy, blurred ones. A linear image restoration algorithm based on a wavelet-domain local gaussian model is proposed in this paper. The wavelet-domain local gaussian model approximates the local probability distribution of the wavelet coefficients with a single gaussian function. Because the wavelet-domain local gaussian model adaptively characterizes the local statistic properties of real-world images, the algorithm presented in this paper specifies the prior distribution of the real-world image through the model and converts the restoration problem to an constrained optimization one which can be solved with the conjugate gradient method. Experimental results show that the algorithm can properly retrieve various kinds of edges, and the PNSR (peak signal to noise ratio) and subjective visual effect of the restored images are improved significantly.

    参考文献
    [1]Lagendijk RL, Biemond J. Iterative Identification and Restoration of Images. Boston: Kluwer Academic Publishers, 1991.
    [2]Zou MY. Deconvolution and Signal Recovery. Beijing: National Defense Industry Press, 2001 (in Chinese).
    [3]Geman D, Yang C. Nonlinear image recovery with half-quadratic regularization. IEEE Trans. on Image Processing,1995,4(7):932~946.
    [4]Charbonnier P, Blanc-Feraud L, Aubert G. Deterministic edge-preserving regularization in computed imaging. IEEE Trans. on Image Processing, 1997,6(2):298~311.
    [5]Vogel CR, Oman ME. Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. on Image Processing,1998,7(6):813~824.
    [6]Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998.
    [7]Belge M, Kilmer ME, Miller EL. Wavelet domain image restoration with adaptive edge-preserving regularization. IEEE Trans. on Image Processing, 2000,9(4):597~608.
    [8]Zhao SB, Peng SL. Wavelet-Domain HMT-based image superresolution. Journal of Computer-Aided Design & Computer Graphics,2003,11 (3): 1347~1352 (in Chinese with English abstract).
    [9]Banhan M, Katsaggelos AK. Spatially adaptive wavelet-based multiscale image restoration. IEEE Trans. on Image Processing,1996,5(4):619~634.
    [10]Neelamani R, Choi H, Baraniuk R. ForWaRD: Fourier-Wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans.on Signal Processing, 2004,2(2):418~433.
    [11]Katsaggelos AK. Digital Image Restoration. Berlin: Springer-Verlag, 1991.
    [12]Figueiredo MAT, Nowak RD. An EM algorithm for wavelet-based image restoration. IEEE Trans. on Image Processing,2003,8(8) :906~916.
    [13]Antonini M, Barlaud M, Mathieu P, Daubechies I. Image coding using wavelet transform. IEEE Trans. on Image Processing,1992,1 (2):205~220.
    [14]Archer G, Titterington DM. On some Bayesian regularization methods for image restoration. IEEE Trans. on Image Processing,1995,4(7):989~995.
    [15]Crouse MS, Nowak RD, Baraniuk RG. Wavelet-Based statistical signal processing using hidden markov models. IEEE Trans. on Signal Processing, 1998,46(4):886~902.
    [16]Coifman RR, Donoho DL. Tanslation-Invariant denoising. In: Antoniadis A, Oppenheim G, eds. Wavelets and Statistics. Berlin:Springer-Verlag, 1995.
    [17]邹谋炎.反卷积和信号复原.北京:国防工业出版社,2001.
    [18]赵书斌,彭思龙.基于小波域HMT模型的图像超分辨率重构.计算机辅助设计与图形学学报,2003,11(3):1347~1352.
    相似文献
    引证文献
引用本文

汪雪林,韩华,彭思龙.基于小波域局部高斯模型的图像复原.软件学报,2004,15(3):443-450

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2003-04-11
  • 最后修改日期:2003-09-05
文章二维码
您是第19794314位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号