基于变异和动态信息素更新的蚁群优化算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

ant colony optimization;nearest neighbour;dynamic pheromone updating;mutation algorithm


An Ant Colony Optimization Algorithm Based on Mutation and Dynamic Pheromone Updating
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    尽管蚁群优化算法在优化计算中已得到了很多应用,但在进行大规模优化时,其收敛时间过长仍是应用该算法的一个瓶颈.为此,提出了一种高速收敛算法.该算法采用一种新颖的动态信息素更新策略,以保证在每次搜索中,每只蚂蚁都对搜索做出贡献;同时,还采取了一种独特的变异策略,以对每次搜索的结果进行优化.计算机实验结果表明,该算法与最新的改进蚁群优化算法相比,其收敛速度提高了数十倍乃至数百倍以上.

    Abstract:

    Despite the numerous applications of ACO (ant colony optimization) algorithm in optimization computation, it remains a computational bottleneck that the ACO algorithm costs too much time in order to find an optimal solution for large-scaled optimization problems. Therefore, a quickly convergent version of the ACO algorithm is presented. A novel strategy based on the dynamic pheromone updating is adopted to ensure that every ant contributes to the search during each search step. Meanwhile, a unique mutation scheme is employed to optimize the search results of each step. The computer experiments demonstrate that the proposed algorithm makes the speed of convergence hundreds of times faster than the latest improved ACO algorithm.

    参考文献
    相似文献
    引证文献
引用本文

朱庆保,杨志军.基于变异和动态信息素更新的蚁群优化算法.软件学报,2004,15(2):185-192

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2002-12-19
  • 最后修改日期:2003-06-20
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号