基于R树的方向关系查询处理
作者:
基金项目:

Supported by the National High-Tech Research and Development Plan of China under Grant Nos.2002AA131010, 2002AA134010 (国家高技术研究发展计划(863)); the Pre-Research Project of National University of Defense Technology of China under Grant No.JC02-04-18 (国防科学技术大学预研基

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    方向关系描述了对象间的空间顺序关系.近年来,方向关系查询处理逐渐受到空间数据挖掘和地理信息系统等空间数据库应用领域研究者的关注.方向关系查询处理需要执行方向连接操作,目前有关空间连接的研究主要集中在拓扑关系和距离关系方面,而较少考虑方向关系.研究了基于R树的方向关系查询处理方法,定义了四元组模型表示对象MBR间的方向关系,提出了基于R树的处理方向关系查询过滤(filter)步骤的方法,并将提炼(refinement)步骤细化为3种不同的操作.所提出的方法能够高效处理任意对象间的方向关系查询.考虑到空间数据挖掘中方向关系查询通常是在满足一定距离约束条件的对象之间进行,还提出了一种同时利用方向和距离约束限制R树搜索空间的查询处理算法.实验证明,与不利用R树的方向关系查询处理方法相比,所提出的方法在I/O开销和CPU开销两方面都具有很高的性能.

    Abstract:

    Direction relations deal with order in space. Recently, direction relation query processing has gradually gained attention in geospatial databases applications, such as Spatial Data Mining (SDM) and GIS (geographic information system). The processing of direction relation queries needs spatial join operations. Until now, the research work on processing of spatial joins has primarily focused on topological and distance relations. There is little work on processing joins with direction predicates. This paper presents an efficient method for processing direction relation queries using R-trees. The quad-tuples model is defined to represent direction relations between MBRs (minimum bounding rectangles) of spatial objects. An algorithm of processing the filter step using R-trees is given and the refinement step is further decomposed into three different operations. The method presented can efficiently process direction relation queries between objects of any data types in a 2D space. Using both direction and distance constraints restricting the search space when traversing R-trees, this paper also presents an algorithm of direction relation query processing in SDM. Performance evaluation of the proposed method is conducted using real world datasets and the experiment results show that it performs well with respect to both I/O- and CPU-time.

    参考文献
    [1]Brinkhoff T, Kriegel HP, Seeger B. Efficient processing of spatial joins using R-trees. SIGMOD Record, 1993,22(2):237~246.
    [2]Huang YW, Jing N, Rundensteiner EA. Spatial joins using R-trees: Breadth-First traversal with global optimizations. In: Jarke M, et al. eds. Proc. of the VLDB'97. San Francisco: Morgan Kaufmann Publishers, 1997. 396~405.
    [3]Hjaltason GR, Samet H. Incremental distance join algorithms for spatial databases. In: Haas LM, Tiwary A, eds. Proc. of the SIGMOD'98. New York: ACM Press, 1998. 237~248.
    [4]Shin H, Moon B, Lee S. Adaptive multi-stage distance join processing. SIGMOD Record, 2000,29(2):343~354.
    [5]Patel JM, DeWitt DJ. Partition based spatial-merge join. SIGMOD Record, 1996,25(2):259~270.
    [6]Lo M-L, Ravishankar CV. Spatial hash-joins. SIGMOD Record, 1996,25(2):247~258.
    [7]Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter JS. Scalable sweeping-based spatial join. In: Gupta A, et al., eds. Proc. of the VLDB'98. San Francisco: Morgan Kaufmann Publishers, 1998. 570~581.
    [8]Vitter JS. External memory algorithms. In: Proc. of the ACM-PODS'99. New York: ACM Press, 1998. 119~128.
    [9]Gunther O. Efficient computation of spatial joins. In: Proc. of the ICDE'93. Los Alamitos: IEEE Computer Society Press, 1993. 50~59.
    [10]Becker L, Hinriches K, Finke U. A new algorithm for computing joins with grid files. In: Proc. of the ICDE'93. Los Alamitos: IEEE Computer Society Press, 1993. 190~197.
    [11]Zhu H, Su J, Ibarra OH. On multi-way spatial joins with direction predicates. In: Jensen CS, et al., eds. Proc. of the SSTD 2001. Lecture Notes in Computer Science 2121, Berlin: Springer-Verlag, 2001. 217~235.
    [12]Brinkhoff T, Kriegel HP, Schneider R, Seeger B. Multi-Step processing of spatial joins. SIGMOD Record, 1994,23(2):197~208.
    [13]Liu X, Shekhar S, Chawla S. Consistency checking for Euclidean spatial constraints: A dimension graph approach. Technical Report, TR00-039, Minneapolis: University of Minnesota, 2000.
    [14]Papadias D, Theodoridis Y, Sellis T. The retrieval of direction relations using r-trees. In: Karagiannis D, ed. Proc. of the DEXA'94. Lecture Notes in Computer Science 856, Berlin: Springer-Verlag, 1994. 173~182.
    [15]Goyal RK, Egenhofer MJ. Similarity of cardinal directions. In: Jensen CS, et al., eds. Proc. of the SSTD 2001. Lecture Notes in Computer Science 2121, Berlin: Springer-Verlag, 2001. 36~55.
    [16]Cao H, Chen J, Du DS. Qualitative extension description for cardinal directions of spatial objects. Acta Geodetica et Cartographica Sinica, 2001,30(2):162~167 (in Chinese with English abstract).
    [17]Feng YC, Chen L, Cao ZS. Direction relation model of spatial database. Computer Engineering and Applications, 2001,20:115~117 (in Chinese with English abstract).
    [18]US Bureau of the Census. Census 2000 TIGER/Line files. 2000. http://www.census.gov/
    [19]曹菡,陈军,杜道生.空间目标方向关系的定性扩展描述.测绘学报,2001,30(2):162~167.
    [20]冯玉才,陈琳,曹忠升.空间数据库的方向关系模型.计算机工程与应用,2001,20:115~117.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖予钦,张巨,景宁,李军.基于R树的方向关系查询处理.软件学报,2004,15(1):103-111

复制
分享
文章指标
  • 点击次数:4377
  • 下载次数: 5694
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2003-06-24
  • 最后修改日期:2003-08-18
文章二维码
您是第19988490位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号