彩色图像人脸高光区域的自动检测与校正方法
作者:
基金项目:

Supported by the Scientific Research Foundation of Oversea Chinese Affairs Office of State Council under Grant No.02QZR15 (国务院侨办科研基金); the Natural Science Foundation of Fujian Province of China under Grant No.A0210017 (福建省自然科学基金)


A Method for Automatic Detection and Correction of Highlighted Area in Color Face Image
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    人脸检测和识别受不同环境照明的影响很大,彩色图像中人脸高光区域的自动检测和辐射校正有助于对人脸的正确分析和识别.提出了一种在TSL(tint-saturation-luminance)彩色空间基于双色反射模型进行高光检测和辐射校正的新方法.通过考察肤色在各种不同彩色空间中的分布形态,以及对皮肤光谱反射特性的分析,采用关键的2维平面代替3维彩色空间进行高光分析.一方面降低了算法复杂度,另一方面又可以在序贯主分量分析中提出特征值比值,迅速而准确地自动检测是否有皮肤高光区域的存在,同时还可以鲁棒地确定皮肤双色反射矢量,应用双色反射模型进行肤色高光区域的辐射校正.

    Abstract:

    Different environment illumination has a great impact on face detection and recognition. The automatic detection and radiation correction of a highlighted face area is helpful to analyze and identify human faces correctly in a color image. In this paper, a novel approach is presented based on a dichromatic reflection model to detect and correct highlighted skin pixels in the TSL(tint-saturation-luminance) color space. After inspecting the distribution configuration of skin pixels in various color spaces and the spectrum reflection features of human skin, the authors carry out the highlighted are a analysis on a critical two-dimensional plane instead of in a three-dimensional color space, which brings forth certain advantages: computation complexity is deduced, rates between eigenvalues are produced in stepwise PCA to detect automatically the existence of highlighted skin and estimate robustly the skin dichromatic reflection vectors. The highlighted skin regions are compensated based on the dichromatic reflection model.

    参考文献
    [1]Hjelmas E, Low BK. Face detection: A survey. Computer Vision and Image Understanding, 2001,83(3):236~274.
    [2]Yang MH, Kriegman D, Ahuja N. Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(1):34~58.
    [3]Klinker GJ, Shafer SA, Kanade T. A physical approach to color image understanding. International Journal of Computer Vision, 1990,4(1):7~38.
    [4]Strorring M, Ganum E, Andersen HJ. Estimation of the illumination colour using highlights from human skin. In: Proceedings of the 1st International Conference on Color in Graphics and Image Processing. Saint Etienne, 2000. http://www.cvmt.dk/~mst/ Publications/cgip2000html/.
    [5]Martinez AM, Benavente R. The AR face database. CVC Technical Report #24, 1998. http://rvl1.ecn.purdue.edu/~aleix/aleix_ face_DB.html.
    [6]Angelopoulou E. Understanding the color of human skin. In: Proceedings of the SPIE Conference on Human Vision and Electronic Imaging VI (SPIE) 2001. SPIE Vol. 4299, SPIE Press, 2001. 243~251. http://www.cs.stevens-tech.edu/~elli/spie.pdf.
    [7]Tao LM, Peng ZY, Xu GY. The feature of skin color. Journal of Software, 2001,12(7):1032~1040 (in Chinese with English abstract).
    [8]Terrillon J-C, Shirazi MN, Fukamachi H, Akamatsu S. Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human faces in color images. In: Proceedings of the 4th international Conference on automatic face and gesture recognition. IEEE Computer Society, 2000. 54~61. http://dlib.computer.org/conferen/fg/0580/pdf/ 05800054.pdf.
    [9]Chen DS, Xie ZP, Liu ZK. Extraction of number plate and character segmentation from color image under complex background. Mini-Micro Systems, 2002,23(9):1144~1148 (in Chinese with English abstract).
    [10]陶霖密,彭振云,徐光祐.人体的肤色特征.软件学报,2001,12(7):1032~1040.
    [11]陈锻生,谢志鹏,刘政凯.复杂背景下彩色图像车牌提取与字符分割技术.小型微型计算机系统,2002,23(9):1144~1148.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈锻生,刘政凯.彩色图像人脸高光区域的自动检测与校正方法.软件学报,2003,14(11):1900-1906

复制
分享
文章指标
  • 点击次数:4746
  • 下载次数: 6979
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2002-10-28
  • 最后修改日期:2003-02-28
文章二维码
您是第19868386位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号