基于项目评分预测的协同过滤推荐算法
作者:
基金项目:

Supported by the National High Technology Development 863 Program of China under Grant Nos.863-317-01-04-99, 863-306- ZT06-07-02 (国家高科技发展计划(863))


A Collaborative Filtering Recommendation Algorithm Based on Item Rating Prediction
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    推荐系统是电子商务系统中最重要的技术之一.随着电子商务系统用户数目和商品数目的日益增加,在整个商品空间上用户评分数据极端稀疏,传统的相似性度量方法均存在各自的弊端,导致推荐系统的推荐质量急剧下降.针对用户评分数据极端稀疏情况下传统相似性度量方法的不足,提出了一种基于项目评分预测的协同过滤推荐算法,根据项目之间的相似性初步预测用户对未评分项目的评分,在此基础上,采用一种新颖的相似性度量方法计算目标用户的最近邻居.实验结果表明,该算法可以有效地解决用户评分数据极端稀疏情况下传统相似性度量方法存在的问题,显著地提高推荐系统的推荐质量.

    Abstract:

    Recommendation system is one of the most important technologies in E-commerce. With the development of E-commerce, the magnitudes of users and commodities grow rapidly, resulted in the extreme sparsity of user rating data. Traditional similarity measure methods work poor in this situation, make the quality of recommendation system decreased dramatically. To address this issue a novel collaborative filtering algorithm based on item rating prediction is proposed. This method predicts item ratings that users have not rated by the similarity of items, then uses a new similarity measure to find the target users?neighbors. The experimental results show that this method can efficiently improve the extreme sparsity of user rating data, and provid better recommendation results than traditional collaborative filtering algorithms.

    参考文献
    [1]Breese J, Hecherman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998. 43~52.
    [2]Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
    [3]Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In: Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
    [4]Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
    [5]Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
    [6]Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
    [7]Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Machine Learning, 1997,29(2/3):181~212.
    [8]Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
    [9]Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond: Microsoft Research, 1997.
    [10]Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.
    [11]Wolf J, Aggarwal C, Wu K-L, Yu P. Horting hatches an egg: A new graph-theoretic approach to collaborative filtering. In: Proceedings of the ACM SIGMOD International Conference on Knowledge Discovery and Data Mining. San Diego, 1999. 201~212.
    [12]Sarwar BM, Karypis G, Konstan JA, Riedl J. Application of dimensionality reduction in recommender system-A case study. In: ACM WebKDD 2000 Workshop. 2000.
    [13]Aggarwal CC. On the effects of dimensionality reduction on high dimensional similarity search. In: ACM PODS Conference. 2001.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法.软件学报,2003,14(9):1621-1628

复制
分享
文章指标
  • 点击次数:13473
  • 下载次数: 23559
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2002-08-08
  • 最后修改日期:2002-09-30
文章二维码
您是第20237724位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号