一种通过视频片段进行视频检索的方法
作者:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    视频片段检索是基于内容的视频检索的主要方式,它需要解决两个问题:(1) 从视频库里自动分割出与查询片段相似的多个片段;(2) 按照相似度从高到低排列这些相似片段.首次尝试运用图论的匹配理论来解决这两个问题.针对问题(1),把检索过程分为两个阶段:镜头检索和片段检索.在镜头检索阶段,利用相机运动信息,一个变化较大的镜头被划分为几个内容一致的子镜头,两个镜头的相似性通过对应子镜头的相似性计算得到;在片段检索阶段,通过考察相似镜头的连续性初步得到一个个相似片段,再运用最大匹配的Hungarian算法来确定真正的相似片段.针对问题(2),考虑了片段相似性判断的视觉、粒度、顺序和干扰因子,提出用最优匹配的Kuhn-Munkres算法和动态规划算法相结合,来解决片段相似度的度量问题.实验对比结果表明,所提出的方法在片段检索中可以取得更高的检索精度和更快的检索速度.

    Abstract:

    Video clip retrieval plays a critical role in the content-based video retrieval. Two major concerns in this issue are: (1) automatic segmentation and retrieval of similar video clips from video database; (2) similarity ranking of similar video clips. In this paper, motivated by the maximal matching and optimal matching in graph theory, a novel approach is proposed for video clip retrieval based on matching theory. To tackle the clip segmentation and retrieval, the retrieval process is divided into two phases: shot-based retrieval and clip-based retrieval. In shot-based retrieval, a shot is temporally partitioned into several sub-shots based on motion content. The similarity among shots is measured according to the color content of sub-shots. In clip-based retrieval, candidates of similar video clips are selected by modeling the continuity of similar shots. Maximal matching based on Hungarian algorithm is then adopted to obtain the final similar video clips. To rank the similarity of the selected video clips, four different factors: visual similarity, granularity, interference and temporal order of shots are taken into consideration. These factors are modeled by optimal matching based on Kuhn-Munkres algorithm and dynamic programming. Experimental results indicate that the proposed approach is effective and efficient in retrieving and ranking similar video clips.

    参考文献
    [1]Lin T, Ngo CW, Zhang HJ, Shi QY. Integrating color and spatial features for content-based video retrieval. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2001). 2001. 592~595. http://research.microsoft.com/asia/dload_files/ group/mcomputing/ICIP01_lin-4th.pdf.
    [2]Lin T, Zhang HJ, Feng JF, Shi QY. Shot content analysis for video retrieval applications. Journal of Software, 2002,13(8):1577~ 1585 (in Chinese with English abstract).
    [3]Zhao L, Qi W, Li ZQ, Yang SQ, Zhang HJ. Content-Based retrieval of video shot using the improved neatest feature line method. Journal of Software, 2002,13(4):586~590 (in Chinese with English abstract).
    [4]Ngo CW, Pong TC, Zhang HJ. On clustering and retrieval of video shots through temporal slices analysis. IEEE Transactions on Multimedia, 2002,4(4):446~459.
    [5]Dimitrova N, Abdel-Mottaled M. Content-Based video retrieval by example video clip. In: Proceedings of IS&T and SPIE Storage and Retrieval of Image and Video Databases VI, Vol.3022. 1998. 184~196.
    [6]Jain AK, Vailaya A, Wei X. Query by video clip. ACM Multimedia Systems, 1999,7(5):369~384.
    [7]Tan YP, Kulkarni SR, Ramadge PJ. A framework for measuring video similarity and its application to video query by example. In: Proceedings of IEEE International Conference on Image Processing (ICIP 1999). 1999. 106~110. http://www.ee.princeton.edu/ ~ramadge/postscript/ICIP99_635.pdf.
    [8]Liu XM, Zhuang YT, Pan YH. A new approach to retrieve video by example video clip. In: Proceedings of ACM Multimedia. 1999. 41~44. http://amp.ece.cmu.edu/Publication/Xiaoming/ACMMM99Poster.pdf.
    [9]Wu Y, Zhuang YT, Pan YH. Content-Based video similarity model. In: Proceedings of the ACM Multimedia, 2000. http://www.acm. org/sigs/sigmm/MM2000/ep/wu/wu.pdf.
    [10]Zhuang YT, Liu XM, Wu Y, Pan YH. A new approach to retrieve video by example video clip. Chinese Journal of Computers, 2000,23(3):300~305 (in Chinese with English abstract).
    [11]Chen LP, Chua TS. A match and tiling approach to content-based video retrieval. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME 2001). 2001. 417~420. http://www.comp.nus.edu.sg/~chuats/papers/icme01.pdf.
    [12]Ngo CW, Pong TC, Chin RT. Video partitioning by temporal slice coherency. IEEE Transactions on Circuits and Systems for Video Technology, 2001,11(8):941~953.
    [13]Ngo CW, Pong TC, Zhang HJ. Motion-Based video representation for scene change detection. International Journal of Computer Vision, 2002,50(2):127~143.
    [14]Dai YQ, Hu GZ, Chen W. Graph Theory and Algebra Structure. Beijing: Tsinghua University Press, 1995. 89~91 (in Chinese).
    [15]Xiao WS. Graph Theory and Its Algorithms. Beijing: Aviation Industry Press, 1993. 134~142 (in Chinese).
    [2]林通,张宏江,封举富,石青云.镜头内容分析及其在视频检索中的应用.软件学报,2002,13(8):1577~1585.
    [3]赵黎,祁卫,李子青,杨士强,张宏江.利用改进NFL算法对镜头进行基于内容的检索.软件学报,2002,13(4):586~590.
    [10]庄越挺,刘小明,吴翌,潘云鹤.通过例子视频进行视频检索的新方法.计算机学报,2000,23(3):300~305.
    [14]戴一奇,胡冠章,陈卫.图论与代数结构.北京:清华大学出版社,1995.89~91.
    [15]肖位枢.图论及其算法.北京:航空工业出版社,1993.134~142.
    相似文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

彭宇新,Ngo Chong-Wah,董庆杰,郭宗明,肖建国.一种通过视频片段进行视频检索的方法.软件学报,2003,14(8):1409-1417

复制
分享
文章指标
  • 点击次数:4892
  • 下载次数: 7964
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2002-11-25
  • 最后修改日期:2003-03-20
文章二维码
您是第19766121位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号