有限信念集上修正的一种方法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60033020, 60103020 (国家自然科学基金); the China Postdoctoral Science Foundation (中国博士后科学基金)


An Approach to the Revision of a Finite Belief Set
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    讨论了信念集是有限子句集时的信念修正方法.首先给出了一阶逻辑上求所有极小不协调子集的一个过程,证明了该过程的正确性;然后讨论了由有极小不协调的子集来实现信念修正的方法,介绍所开发的信念修正的原型系统;最后与相关工作进行了比较.

    Abstract:

    In this paper, an approach to the revision of a finite belief set is presented. First, a procedure for generating all the minimal inconsistent sets is introduced, and the correctness of the procedure is proved. Then what discussed further is that how to apply the procedure to the implementation of some representative methods, and a implemented prototype for belief revision is introduced. At last, the presented approach is compared with other related work.

    参考文献
    [1]Doyle J. A truth maintenance system. Artificial Intelligence, 1979,12(3):231~272.
    [2]Kleer JD. An assumption-based TMS. Artificial Intelligence, 1986,28(2):127~162.
    [3]Fagin R, Ullman JD, Vardi MY. On the semantics of updates in databases. In: DeWitt DJ, Gardarin G, eds. Proceedings of the 2nd ACM SIGACT-SIGMOD Symposiumon Principle of Database Systems. New York: ACM Press, 1983. 352~365.
    [4]Ginsberg ML, Smith DE. Reasoning about action I: A possible worlds approach. Artificial Intelligence, 1988,35(2):165~195.
    [5]Dalal M. Investigations into a theory of knowledge base revision: Preliminary report. In: Mitchell TM, Smith RG, eds. Proceedings of the 7th National Conference on Artificial Intelligence. AAAI Press, 1988. 475~479.
    [6]Satoh K. Nonmonotonic reasoning by minimal belief revision. In: ICOT, ed. Proceedings of the International Conference on the 5th Generation Computer System. Berlin: Springer-Verlag, 1988. 455~462.
    [7]Borgida A. Language features for flexible handling of exception in information systems. ACM Transactions on Database System, 1985,10(4):536~603.
    [8]Weber A. Updating propositional formulas. In: Kerschberg L, ed. Proceedings of the 1st Conference on Expert Database Systems. Menlo Park: Benjamin Cummings, 1986. 487~500.
    [9]Forbus KD. Introducing actions into qualitative simulation. In: Sridharan NS, ed. Proceedings of the International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 1989. 1273~1278.
    [10]Winslett M. Reasoning about action using possible models approach. In: Mitchell TM, Smith RG, eds. Proceedings of the 7th National Conference on Artificial Intelligence. AAAI Press. 1988. 89~93.
    [11]Alchourron CE, Gardenfors P, Markinson D. On the logic of theory change: Partial meet contraction and revision functions. The Journal of Symbolic Logic, 1985,50(2):510~530.
    [12]Gardenfors P. Knowledge in Flux: Modeling the Dynamics of Epistemic States. Cambridge: The MIT Press, 1988.
    [13]Gardenfors P, Makinson D. Revisions of knowledge systems using epistemic entrenchment. In: Vardi MY, ed. Proceedings of the 2nd Conference on TheoreticalAspects of Reasoning About Knowledge. San Francisco: Morgan Kaufmann Publishers, 1988. 83~95.
    [14]Katsuno H, Mendelzon AO. Propositional knowledge base revision and minimal change. Artificial Intelligence, 1991,52(3): 263~294.
    [15]Nebel BA. Knowledge level analysis of belief revision. In: Brachman RJ, Levesque HJ, Reiter R, eds. Proceedings of the 1st International Conference on Principles of Knowledge Representation and Reasoning. San Francisco: Mrogan Kaufman Publishers, 1989. 301~311.
    [16]Hansson SO. New operators for theory change. Theoria, 1989,50:114~132.
    [17]Fuhrman A. Theory contraction through base contraction. Journal of Philosophical Logic, 1991,20:175~203.
    [18]Rott H. A nonmonotonic conditional logic for belief revision I. In: Fuhrman A, Morreau M, eds. The Logic of Theory Change. Berlin : Springer-Verlag, 1991. 135~181.
    [19]Williams M. Two operators for theory base change. In: Adams A, Sterling LS, eds. Proceedings of the 5th Australian Joint Conference on Artificial Intelligence. Singapore: World Scientific, 1992. 256~265.
    [20]Wobcke WR. A belief revision approach to nonmonotonic reasoning. In: Adams A, Sterling LS, eds. Proceedings of the 5th Australian Joint Conference on Artificial Intelligence. Singapore: World Scientific, 1992. 278~283.
    [21]Li W. A open logic system. Science in China (Series A), 1993,22(10):1103~1113.
    [22]Li W, Shen NC, Wang J. R-Calculus: A logical approach for knowledge base maintenance. International Journal of Artificial Intelligence Tools, 1995,4(1-2):177~200.
    [23]Darwiche A, Pearl J. On the logic of iterated belief revision. ArtificialIntelligence, 1997,89(1~2):1~29.
    [24]Boutilier C. Revision sequences and nested conditionals. In: Bajcsy R, ed. Proceedings of the 13th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 1993. 519~525.
    [25]Dixon SE. Belief revision: a computational approach [Ph.D. Thesis]. Sydney: University of Sydney, 1994.
    [26]Dixon SE. A finite base belief revision system. Australian Computer Science Communications, 1993,15(1):445~451.
    [27]Dixon SE, Wocke WR. The implementation of a first-order logic AGM belief revision system. In: Bajcsy R, ed. Proceedings of the 13th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers,1993. 534~539.
    [28]Williams MA. Towards a practical approach to belief revision: reason-based approach. In: Aiello LC, Doyle J, Shapiro SC, eds. Proceedings of the 5th International Conference on Principles of Knowledge Representation and Reasoning. San Francisco: Morgan Kaufmann Publishers, 1996. 412~420.
    [29]Damasio CV, Nejdl W, Pereira LP. REVISE: An extended logic programming systems for revising knowledge bases. In: Doyle J, Sandewall E, Torasso P, eds. Proceedings of the International Conference on Knowledge Representation and Reasoning. San Francisco: Morgan Kaufmann Publishers, 1994. 607~618.
    [30]Sullivan JW, Tyler SW. Intelligent User Interfaces. New York: ACM Press, 1991.
    [31]Gallier JH. Logic for Computer Science, Foundations of Automatic Theorem Proving. New York: John Wilsey&Sons Inc., 1987.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

栾尚敏,戴国忠.有限信念集上修正的一种方法.软件学报,2003,14(5):911-917

复制
分享
文章指标
  • 点击次数:4153
  • 下载次数: 5345
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2002-04-22
  • 最后修改日期:2002-05-23
文章二维码
您是第19938946位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号