由矩形确定摄像机内参数与位置的线性方法
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60075004, 60033010, 69975021 (国家自然科学基金); the National Grand Fundamental Research 973 Program of China under Grant No.G1998030502 (国家重点基础研究发展规划(973))


A Linear Approach for Determining Intrinsic Parameters and Pose of Cameras from Rectangles
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出了一种求解摄像机内参数及确定摄像机位置的线性方法.首先通过空间平面上两个非平行矩形的图像来计算圆环点的图像,进而由圆环点对摄像机内参数的约束方程标定摄像机内参数,并给出了此约束方程具有惟一解的充要条件.摄像机方位是通过计算图像与空间平面间的单应矩阵来确定的.另外,还给出了在相差一个比例因子的情况下,由拉盖尔定理恢复矩形欧氏度量信息的线性方法.该方法的特点在于,无须知道矩形的任何几何信息,也不涉及图像匹配问题,而且所有计算方法均是线性的.大量的模拟和真实图像实验结果表明,所给出的方法具有求解精度高、鲁棒性强的优点.

    Abstract:

    In this paper, a linear approach is proposed to determine the camera’s intrinsic parameters as well as its pose. At first, the images of the two circular points are derived from the images of two unparallel coplanar rectangles in space, then some linear constraints on the intrinsic parameters are established via the obtained images of the circular points. In addition, the necessary and sufficient condition of the constraint system for a unique solution is also provided. Having obtained intrinsic parameters, the camera’s pose can be computed from the homography between the image plane and the space plane. Besides, a linear approach is also presented to retrieve the metric information (i.e., the Euclidean one up to a scale) of the rectangles by means of the Laguerre theorem. The main advantage of these approaches lie in that neither the metric information of the rectangles nor the correspondences between images are required, and the involved algorithms are all linear. Extensive simulations and experimental results with real images show that these proposed approaches are both accurate and robust.

    参考文献
    [1]Hartley R. Estimation of relative camera positions for uncalibrated cameras. In: Sandini G, ed. Proceedings of the European Conference on Computer Vision. NLCS 588, Springer-Verlag, 1992. 579~387.
    [2]Maybank SJ, Faugeras OD. A theory of self-calibration of a moving camera. International Journal of Computer Vision, 1992,8(2): 123~151.
    [3]Hartley R. Self-Calibration of stationary cameras. International Journal of Computer Vision, 1997,22(1):5~23.
    [4]Dron L. Dynamic camera self-calibration of from controlled motion sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Computer Society Press, 1993. 501~506.
    [5]Du F, Brady M. Self-Calibration of the intrinsic parameters of cameras for active vision systems. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Computer Society Press, 1993. 477~482.
    [6]Pollefeys M, Koch R, Gool LV. Self-Calibration and metric reconstruction in spite of varying and unknown internal camera parameters. In: Proceedings of the International Conference on Computer Vision. Bombay, 1998. 90~95.
    [7]Sturm P. Critical motion sequences for monocular self-calibration and uncalibrated Euclidean reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Pureto Rico: IEEE CS Press, 1997. 1100~1105.
    [8]Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. Cambridge: University Press, 2000.
    [9]Li H, Wu FC, Hu ZY. A novel linear camera self-calibration technique. Chinese Journal of Computers, 2000,23(11):1121~1129 (in Chinese with English Abstract).
    [10]Lei C, Wu FC, Hu ZY. Kruppa equation and camera self-calibration. Chinese Journal of Automation, 2001,27(5):621~630 (in Chinese with English Abstract).
    [11]Wu FC, Li H, Hu ZY. A study on active vision based camera self-calibration. Chinese Journal of Automation, 2001,27(6):736~746 (in Chinese with English Abstract).
    [12]Yang CJ, Wang W, Hu ZY. An active vision based self-calibration technique. Chinese Journal of Computers, 1998,21(5):428~435 (in Chinese with English Abstract).
    [13]Ma SD. A self-calibration technique for active vision systems. IEEE Transactions on Robotics and Automation, 1996,12(1): 114~120.
    [14]Zhang Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1330~1334.
    [15]Meng XQ, Li H, Hu ZY. A new easy camera calibration technique based on circular points. In: Mirmehdi M, Thomas B, eds. Proceedings of the British Machine Vision Conference. Bristol: ILES Central Press, 2000. 496~501.
    [16]Semple JG, Kneebone GT. Algebraic Projective Geometry. London: Oxford University Press, 1952.
    [17]Zhang Z, Deriche R, Faugeras O, Luong QT. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence, 1995,75(1~2):87~120.
    [18]Zhang Z. Motion and structure from two perspective views: from essential parameters to Euclidean motion via fundamental matrix. Journal of the Optical Society of America A, 1997,14(11):2938~2950.
    [19]李华,吴福朝,胡占义.一种新的线性摄像机自标定方法.计算机学报,2000,23(11):1121~1129.
    [20]雷成,吴福朝,胡占义.Kruppa方程与摄像机自标定.自动化学报,2001,27(5):621~630.
    [21]吴福朝,李华,胡占义.基于主动视觉系统的摄像机自定标方法研究.自动化学报,2001,27(6):736~746.
    [22]杨长江,汪威,胡占义.一种基于主动视觉的摄像机内参数自标定技术.计算机学报,1998,21(5):428~435.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴福朝,王光辉,胡占义.由矩形确定摄像机内参数与位置的线性方法.软件学报,2003,14(3):703-712

复制
分享
文章指标
  • 点击次数:4367
  • 下载次数: 5439
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2001-11-30
  • 最后修改日期:2002-02-27
文章二维码
您是第19829834位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号