蚁群算法求解连续空间优化问题的一种方法
作者:
基金项目:

国家自然科学基金资助项目(60074013);国家高性能计算基金资助项目(00219);江苏省教育厅自然科学基金项目(99KJB520003);南京大学计算机软件新技术国家重点实验室开放基金资助项目


A Method for Solving Optimization Problem in Continuous Space by Using Ant Colony Algorithm
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对蚁群算法不太适合求解连续性优化问题的缺陷,提出用蚁群算法求解连续空间优化问题的一种方法.该方法将解空间划分成若干子域,在蚁群算法的每一次迭代中,首先根据信息量求出解所在的子域,然后在该子域内已有的解中确定解的具体值.以非线性规划问题为例所进行的计算结果表明,该方法比使用模拟退火算法、遗传算法具有更好的收敛速度.

    Abstract:

    A drawback of ant colony algorithm is not suitable for solving continuous optimization problems. A method for solving optimization problem in continuous space by using ant colony algorithm is presented. By dividing the space into subdomains, in each iteration of the ant colony algorithm, the method first find the subdomain in which the solution located by using the trail information, then the values of the components in the solution can be determined from the existing solutions in the subdomain. The experimental results on the nonlinear programming problem show that the method has much higher convergence speed than that of GA and SA.

    参考文献
    [1] Dorigo, M., Maniezzo, V., Colorni, A. Ant system: optimization by a colony of coorperating agents. IEEE Transactions on SMC,1996,26(1):8~41.
    [2] Dorigo, M., Gambardella, L.M. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computing, 1997,1(1):53~56.
    [3] Colorni, A., Dorigo, M., Maniezzo, V. Ant colony system for job-shop scheduling. Belgian Journal of Operations Research Statistics and Computer Science, 1994,34(1):39-53.
    [4] Maniezzo, V. Exact and approximate nonditerministic tree search procedures for the quadratic assignment problem. Informs Journal of Computer, 1999,(11):358~369.
    [5] Maniezzo, V., Carbonaro, A. An ANTS heuristic for the frequency assignment problem. Future Generation Computer Systems,2000,(16):927~935.
    [6] Gambardella, L.M., Dorigo, M. HAS-SOP: an hybrid ant system for the sequential ordering problem. Technique Report, No. IDSIA97-11, Lugano: IDSIA, 1997.
    [7] Gambardella, L.M., Dorigo, M. Ant-Q: a reinforcement learning approach to the traveling salesman problem. In: Prieditis, A.,Russell, S., eds. Proceedings of the 12th International Conference on Machine Learning. Tahoe, CA: Morgan Kaufmann, 1995.252~260.
    [8] Dorigo, M., Luca, M. A study of some properties of Ant-Q. Technical Report, TR/IRIDIA/1996-4, IRIDIA, Universite Libre de Bruxelles, 1996.
    [9] Stutzle, T., Hoos, H.H. Improvements on the ant system: introducing the MAX-MIN ant system. In: Smith, G.D., Steele, N.C.,Albrecht, R.F., eds. Proceedings of the Artificial Neural Nets and Genetic Algorithms 1997. Wien: Springer-Verlag, 1998. 245-249.
    [10] Wu, Qing-hong, Zhang, Ji-hui, Xu, Xin-he, An ant colony algorithm with mutation features. Journal of Computer Research & Development, 1999,36(10): 1240~ 1245 (in Chinese).
    [11] Bilchev, G., Parmee, I.C. The ant colony metaphor for searching continuous design spaces. In: Fogarty, Y., ed. Proceedings of the 1995 AISB workshop on evolutionary computing, Lecture Notes in Computer Science, Vol 993. New York: Springer-Verlag, 1995.25~39.
    [12] Sheng, Jie, Chen, Ling. A new approach to solving nonlinear programming. Journal of System Science and System Engineering,2002,11(1):28~36.
    [13] Michalewicz, Z. Genetic Algorithms + data Structures - Evolutionary Programs. 3rd ed., Berlin: Springer-Verlag/Heidelberg Press,1996. 261~262.
    [14] 吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法.计算机研究与发展,1999,36(10):1240~1245.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈崚,沈洁,秦玲.蚁群算法求解连续空间优化问题的一种方法.软件学报,2002,13(12):2317-2323

复制
分享
文章指标
  • 点击次数:3991
  • 下载次数: 8895
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2001-09-25
  • 最后修改日期:2002-04-10
文章二维码
您是第19999964位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号