相关测度与增量式支持度和信任度的计算
作者:
基金项目:

辽宁省自然科学基金资助项目(9910200205);辽宁省教育厅高校科研基金资助项目(20012073)


Correlativity Measure and Incremental Computation of Support and Confidence
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    通过相关测度的定义,从理论上探讨了增量式规则发现问题,并把分类规则挖掘和关联规则挖掘联系起来进行研究,为该问题的深入研究奠定了理论基础.相关测度刻画了给定关系和相关集合的数字特征.对相关测度的概念、定义、性质以及与支持度和信任度的关系等方面作了详细的分析和探讨,给出了基于相关集合的支持度和信任度的定义及计算方法.证明了测度增量定理和支持度增量定理,并给出了增量式支持度和信任度的计算公式.另外还详细地分析了数据增量对关联规则和信任度的影响,探讨了基于新支持度的候选项的修剪问题.所提出的相关测度及其思想为研究既能用于分类规则又能用于关联规则的统一数据挖掘方法提供了有价值的新思路.

    Abstract:

    By defining the correlativity measure, the problem of incremental discovering association rule is discussed in theory, and the mining association rule and the mining classification rule are combined to research, which establishes the theoretical foundations for researching the problem in detail. The correlativity measure depicts the numeral character of given relation and mutuality set. The conception, the definition and the properties of the proposed correlativity measure, and the relation between support and confidence are analyzed and discussed in detail. The new definition, methods, methods of computing support, and the confidence based on mutuality set are proposed. The incremental computing formulas of support and confidence are given, and incremental theorems of support and confidence are also proved. On the side, the influences of incremental data upon association rules and the confidence are analyzed in detail. The problem of pruning candidate frequent item set based on new support is also discussed. The correlativity measure and its idea proposed in this paper provide a new valuable way for studying a unification method for mining classification rules and associte rules from database.

    参考文献
    [1] Agrawal, R., Imielinski, T., Swami, A. Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S., eds. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. ACM Press, 1993. 207~216.
    [2] Agrawal, R., Srikant, R. Fast algorithms for mining association rules. In: Bocca, J.B., Jarke, M., Zaniolo, C., eds. Proceedings of the 20th International Conference on Very Large Data Bases (VLDB'94). Santiago: Morgan Kaufmann, 1994. 487~499.
    [3] Park, J.S., Chen, M.S., Yu, P.S. An effective hash based algorithm for mining association rules. In: Carey, M.J., Schneider, D.A., eds. Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data. San Jose, 1995. 175~186.
    [4] Savasere, A., Omiecinski, E., Navathe, S. An effective algorithm for mining association rules in large databases. In: Dayal, U., Gray, P.M.D., Nishio, Shojiro, eds. Proceedings of 21st International Conference on Very Large Data Bases (VLDB'95). Zurich: Morgan Kaufmann, 1995. 432~443.
    [5] Cheung, D.W., Han, J., Ng, V., et al. Maintenance of discovered association rules in large databases: an incremental updating technique. In: Su, S.Y.W., ed. Proceedings of the 12th International Conference on Data Engineering. New Orleans: IEEE Computer Society, 1996. 106~114.
    [6] Feng, Yu-cai, Feng, Jian-lin. Incremental updating algorithm for mining association rules. Journal of Software, 1998,9(4):301~306 (in Chinese).冯玉才,冯剑琳.关联规则的增量式更新算法.软件学报,1998,9(4):301~306.
    [7] Yang, Xue-bing, Gao, Jun-bo, Cai, Qing-sheng. Incremental updating association rule mining algorithm. Mini Micro Systems, 2000,21(6):611~613 (in Chinese).杨学兵,高俊波,蔡庆生.可增量更新的关联规则挖掘算法.小型微型计算机系统,2000,21(6):611~613.
    [8] Zhou, Bin, Wu, Quan-yuan, Gao, Hong-kui. Designing incremental mining algorithms of sequential patterns. Journal of Computer Research and Development, 2000,37(10):1160~1165 (in Chinese).周斌,吴泉源,高洪奎.序列模式挖掘的增量式算法的设计原则.计算机研究与发展,2000,37(10):1160~1165.
    [9] Wang, Xiao-feng, Yin, Dan-na, Cheng, Shihchuan. Mutuality sets. Journal of Shenyang Institute of Chemical Technology, 1999,13(3):67~76.
    [10] Wang, Xiao-feng, Yin, Dan-na, Cheng, Shihchuan. Mutuality sets and its applications in reduct of knowledge system. Journal of Tsinghua University, 1998,38(S2):6~9 (in Chinese).王晓峰,尹丹娜,郑诗诠.相关集合及其在知识库化简中的应用.清华大学学报,1998,38(S2):6~9.
    [11] Wang, Xiao-feng, Tang, Zhong, Zhao, Yue. The application of mutuality sets for knowledge discovered from database. Journal of Nanjing University, 2000,36(11):52~57 (in Chinese).王晓峰,唐忠,赵越.相关集合数据库知识发现中的应用.南京大学学报,2000,36(11):52~57.
    [12] Pawlak, Z. Rough sets theoretical aspects of reasoning about data. Kluwer Academic Publishers, 1991.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王晓峰,王天然.相关测度与增量式支持度和信任度的计算.软件学报,2002,13(11):2208-2214

复制
分享
文章指标
  • 点击次数:3657
  • 下载次数: 5385
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2001-02-06
  • 最后修改日期:2001-04-18
文章二维码
您是第19999597位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号