多Agent多问题协商模型
作者:
基金项目:

国家自然科学基金资助项目(69905001);国家教育部博士点基金资助项目(97028428)


A Multi-Agent Multi-Issue Negotiation Model
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在多agent环境中,协商是多agent系统能够成功运转的关键.根据参与协商agent的数目和协商问题的数目,多agent环境中的协商可以分为双边-单问题协商、双边-多问题协商、多边-单问题协商、多边-多问题协商.前3种协商是多边-多问题协商在不同维上的简化.利用协商-协商过程-协商线程的概念建立了一个多边-多问题协商模型MMN(multi-agent multi-issue negotiation).该模型通过提供一个灵活的协商协议支持多agent环境中的不同协商形式,并且支持agent在协商过程中的学习.

    Abstract:

    Negotiation is a key issue for success application of multi-agent technology. According to the number of agents and the number of issues, negotiation in multi-agent environment can be classified as bilateral-single issue negotiation, bilateral-multi-issue negotiation, multi-lateral-single issue negotiation, and multi-lateral-multi-issue negotiation. The previous three scenarios are the simple forms of the multi-lateral-multi-issue negotiation. A multi-lateral-multi-issue negotiation model is provided to divide negotiation into processes,which are further divided into threads.The model defines a flexible negotiation protocol,which makes it easy to support differet negotiation scenarios.And the model also supports the learning capability of participating agents.

    参考文献
    [1] Oliveira, E., Fischer, K., Stepankova, O. Multi-Agent system: which research for which applications. Robotics and Autonomous Systems, 1999,27(1,2):91~106.
    [2] Jennings, N.R., Parsons, S., Sierra, C., et al. Automated negotiation. In: Proceedings of the 5th International Conference on the Practical Application of Intelligent Agents and Multi-Agent Systems (PAAM-2000). 2000. 23~30. http://www.ecs.soton.ac.uk/~nrj/download-files/paam2000-inv.ps.
    [3] Smith, R.G. The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Transactions on Computers, 1980,C29(12):1104~1113.
    [4] Kraus, S., Nirkhe, N., Sycara, K.P. Reaching agreements through argumentation: a logical model and implementation. Artificial Intelligence, 1998,104(1,2):1~69.
    [5] Vulkan, N., Jennings, N.R. Efficient mechanisms for the supply of services in multi-agent environments. International Journal of Decision Support Systems, 2000,28(1,2):5~19.
    [6] Zlotkin, G., Rosenschein, J.S. A domain theory for task-oriented negotiation. In: Proceedings of the 13th International Joint Conference of Artificial Intelligence. 1993. 416~422. ftp://ftp.huji.ac.il/users/jeff/ijcai93gilad.ps.gz.
    [7] Sandholm, T.W. Negotiation among self-interested computationally limited agents [Ph.D. Thesis]. Amherst, MA: University of Massachusetts, 1996.
    [8] Matos, N., Sierra, C., Jennings, N.R. Determining successful negotiation strategies: an evolutionary approach. In: Proceedings of the 3rd International Conference on Multi-Agent Systems (ICMAS'98). 1998. 182~189. http://www.ecs.soton.ac.uk/~nrj/download-files/noyda.ps.
    [9] Osborne, M.J., Rubinstein, A. A Course in Game Theory. MIT Press, 1994.
    [10] Jennings, N.R., Faratin, D., Johnson, M.J., et al. Agent-Based business process management. Journal of Cooperative Information Systems, 1996,5(2,3):105~130.
    [11] Sierra, C., Faratin, D., Jennings, N.R. A service-oriented negotiation model between autonomous agents. In: Proceedings of the 8th European Workshop on Modeling Autonomous Agents in a Multi-agent World (MAAMAW'97). 1997. 17~35. http://www.ecs.soton.ac.uk/~nrj/download-files/SierraFaratinJennings.ps.
    [12] Faratin, P., Sierra, C., Jennings, N.R., et al. Designing responsive and deliberative automated agents. In: Proceedings of the AAAI Workshop on Negotiation: Settling Conflicts and Identifying Opportunities. 1999. 12~18. http://www.ecs.soton.ac.uk/~nrj/download-files/aaai-ws-peyman.ps.
    [13] Sycara, K., Zeng, Da-jun. Bayesian learning in negotiation. In: Working Notes of the AAAI 1996 Stanford Spring Symposium Series on Adaptation, Co-Evolution and Learning in Multi-Agent Systems. 1996. http://www.ri.cmu.edu/pubs/pub_2186.html.
    [14] Keeney, R., Raiffa, H. Decisions with Multiple Objectives: Preferences and Value Trade Offs. John Wiley & Sons, 1976.
    [15] Wang, Li-chun, Gao, Yang, Chen, Shi-fu. Reinforcement learning based negotiation model in AODE. Journal of Nanjing University, 2001,37(2):135~141 (in Chinese).
    [16] Kaelbling, L.P. Reinforcement learning: a survey. Journal of Artificial Intelligence Research, 1996,4:237~285.
    [17] 王立春,高阳,陈世福.AODE中基于强化学习的Agent协商模型.南京大学学报,2001,37(2):135~141.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王立春,陈世福.多Agent多问题协商模型.软件学报,2002,13(8):1637-1643

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2000-11-01
  • 最后修改日期:2000-11-01
文章二维码
您是第19999945位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号