Web数据仓库的异步迭代查询处理方法
作者:
基金项目:

国家自然科学基金资助项目(69873014);国家重点基础研究发展规划973资助项目(G1999032704)


An Asynchronous Iteration Approach for Processing on Web Data Warehouse
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    数据仓库信息量的飞速膨胀对数据仓库提出了巨大挑战.如何提高Web环境下数据仓库的查询效率成为数据仓库研究领域重要的研究问题.对Web数据仓库的体系结构和查询方法进行了研究和探讨.在分析几种Web数据仓库实现方法的基础上,提出了一种Web数据仓库的层次体系结构,并在此基础上提出了Web数据仓库的异步迭代查询方法.该方法充分利用了流水线并行技术,在Web数据仓库的查询处理过程中不同层次的结点以流水线方式运行,并行完成查询的处理,提高了查询效率.理论分析表明,该方法可以有效地提高Web数据仓库的查询效率.

    Abstract:

    The exploding of information in data warehouses makes a great challenge to data warehouse research. How to increase query efficiency across web data warehouse plays an important role in data warehouse research. After analysis of several data warehouse implementation, a kind of hierarchy architecture of the web data warehouses is proposed, and an asynchronous iteration approach for query processing on web data warehouses is presented based on the hierarchy architecture of web data warehouse. In the asynchronous iteraion approach,the pipe;ining paralle processing technique is exp1oited.During of the queries on web data warehouses,all the nodes in difference layers of web data warehouse are executed in pipelining paralle manner so that the performance of the query processing is tremen dously inmproved.The theoretical analysis shows that the asynchronous iteration approach is very efficiently for the query processing on web data warehouses.

    参考文献
    [1] Geffner, S., Agrawal, D., Abbadi, A.E. The dynamic data cube. In: Zaniolo, C., Lockemann, P.C., Scholl, M.H., et al., eds. Proceedings of the 7th International Conference on Extending Database Technology. Konstanz: Springer-Verlag, 2000. 237~253.
    [2] Li, Jian-zhong, Rotem, D., Srivastava, J. Aggregation algorithms for very large compressed data warehouses. In: Atkinson, M.P., Orlowska, M.E., Valduriez, P., et al., eds. Proceedings of the 25th International Conference on the Very Large Data Bases. Edinburgh: Morgan Kaufmann Publishers, Inc., 1999. 662~673.
    [3] Chan, C.Y., Ioannidis, Y.E. Hierarchical cubes for range-sum queries. In: Atkinson, M.P., Orlowska, M.E., Valduriez, P., et al., eds. Proceedings of the 25th International Conference on the Very Large Data Bases. Edinburgh: Morgan Kaufmann Publishers, Inc., 1999. 675~686.
    [4] Lee, S.Y., Ling, T.W., Li, Hua-gang. Hierarchical compact cube for range-max queries. In: Abbadi, A.E., Brodie, M.L., Chakravarthy, S., et al., eds. Proceedings of the 26th International Conference on the Very Large Data Bases. Cairo: Morgan Kaufmann Publishers, Inc., 2000. 232~241.
    [5] Labrinidis, A. Roussopoulos, N. WebView materialization. In: Chen, Wei-dong, Naughton, J.F., Bernstein, P.A., eds. Proceedings of the ACM SIGMOD 2000. Dallas: ACM Press, 2000. 367~378.
    [6] Mistry, H., Roy, P., Sudarshan, S., et al. Materialized view selection and maintenance using multi-query optimization. In: Aref, W. G. ed. Proceedings of the ACM SIGMOD 2001. Santa Barbara, CA: ACM Press, 2001. 307~318.
    [7] Shukla, A., Deshpande, P., Naughton, J.F. Materialized view selection for multidimensional datasets. In: Gupta, A., Shmueli, O., Widom, J., eds. Proceedings of the 24th International Conference on the Very Large Data Bases. New York: Morgan Kaufmann Publishers, Inc., 1998. 488~499.
    [8] Gupta, N., Haritsa, J.R., Ramanath, M. Distributed query processing on the web. http://dsl.serc.iisc.ernet.in/pub/TR/TR-9901.ps.
    [9] Papakonstantinou, Y., Vassalos, V. Query rewriting for semistructured data. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S., eds. Proceedings of the ACM SIGMOD'99. Philadephia, Pennsylvania: ACM Press, 1999. 455~466.
    [10] Roth, M.T., Schwarz, R. Don't scrap it, wrap it! A wrapper architecture for legacy data sources. In: Jarke, M., Carey, M.J., Dittrich, K.R., et al., eds. Proceedings of the 23rd International Conference on the Very Large Data Bases. Athens: Morgan Kaufmann Publishers, Inc., 1997. 266~275.
    [11] Laura M., Kossmann, H.D., Wimmers, E.L., et al. Optimizing queries across diverse data sources. In: Jarke, M., Carey, M.J., Dittrich, K.R., et al., eds. Proceedings of the 23rd International Conference on the Very Large Data Bases. Athens: Morgan Kaufmann Publishers, Inc., 1997. 276~285.
    [12] Bouganim, L., Chan-Sine-Ying, T., Dang-Ngoc, Tuyet-Tram, et al. MIROWeb: integrating multiple data sources through semistructured data types. In: Atkinson, M.P., Orlowska, M.E., Valduriez, P., et al., eds. Proceedings of the 25th International Conference on the Very Large Data Bases. Edinburgh: Morgan Kaufmann Publishers, Inc., 1999. 750~753.
    相似文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何震瀛,李建中,高宏. Web数据仓库的异步迭代查询处理方法.软件学报,2002,13(2):214-218

复制
分享
文章指标
  • 点击次数:3693
  • 下载次数: 4874
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2001-04-20
  • 最后修改日期:2001-11-30
文章二维码
您是第19784024位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号