塑造n边形曲面的外形
作者:
基金项目:

Supported by the Startup Scientific Research Fund for Returned Scholars from the Chinese Education Ministry(国家教育部留学回国员科研启动基金);the Research Fund for Excellent Returned Scholars from the Chinese Academy of Sciences(中国科学院留学经费择优支持回国工作基金);the Post-Doctoral Research Fund from Wang Kuan Cheng Educational Foundation(王宽诚博士后工作奖励基金)


Interactive Shape Deformation of n-Sided Surfaces
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出了一种高效基于物理性质的算法来动态的塑造n边形曲面的外形.这种算法是基于曲面的物理性质.通过极小化一个能量泛函,用户能够直接使用不同形式的外力作为虚拟的塑造工具来改变n边形曲面的外形.用户也能够定义必要的几何约束来进一步控制曲面外形.与通常移动控制点的方法比较,这种基于物理性质的方法更直观和有效.

    Abstract:

    An efficient physically based surface sculpting method is presented in this paper for the interactivedeformation of n-sided surfaces. By minimizing an energy functional, the user is able to deform a surface byapplying different forms of forces directly, acting as virtual sculpting tools. The user is also able to define necessarygeometric constraints, so as to further control the surface shape. Compared with the traditional method that asurface is deformed by moving the control points, this method is much more intuitive and still is very efficient.

    参考文献
    [1] Jeng. E., Xiang, E. Moving cursor plane for interactive sculpting, ACM Transactions on Graphics, 1996,15(3):211~223.
    [2] Sederberg, T. Parry, S. Free-Form deformation of solid geometric models. In: Proceedings of the SIGGRAPH Annual Series. 1986.151~160.
    [3] Hsu W.M. Hughes J.F. Kaufman, H. Direct manipulation of free-form deformations. In: Proceedings of the SIGGRAPH, Annual Series.Chicago: ACM Press, 1992. 261~268.
    [4] Fowler. B. Barrels, R. Constrained based curve manipulation. IEEE Computer Graphics & Applications, 1993,13(5):43~49.
    [5] Chui C.K. Lai M.J. Filling polygonal holes using C cubic triangular spline patches. CAGD, 2000,17:297~307.
    [6] Essa, A. Sclarof, S., Pentland, A. A unified approach for physical & geometric modeling for graphics & animation.Eurographics92. 1992,11(3):127~138.
    [7] Celniker. G.. Welch. W. Linear constraints for deformable B-spline surfaces. In: Proceedings of the 1992 Symposium on Interactive 3D Graphics. Massachusetts: ACM Press, 1992. 165~170.
    [8] Qin. H., Terzopoulos. D. Dynamic NURBS Swung surfaces for physics-based shape design. Computer Aided Design, 1995,27(2):111~127.
    [9] Qin. H., Terzopoulos, D. Dynamic manipulation of triangular B-splines. In: Proceedings of the 3rd Symposium on Solid Modeling and Applications. Salt Lake City: ACM Press, 1995, 351~360.
    [10] Terzopoulos, D. Qin, H. Dynamic NURBS with geometric constraints for interactive sculpting. ACM Transactions on Graphics,1994.13(2):103~136.
    [11] Vassilev. T. Interactive sculpting with deformable nonuniform B-spines. Computer Graphics Forum, 1997,16(4):191~199.
    [12] Ball. A.A.. Zheng, J.J. Degree elevation for n-sided surfaces. CAGD, 2000,18(2): 135~147.
    [13] Gregory. J.A., Zhou, J. Filling polygonal holes with bi-cubic patches. CAGD, 1994,11:391~410.
    [14] Sabin M.A. A symmetric domain for a 6-sided patch. In: Bowyer, A. ed., Computer-Aided Surface Geometry and Design- TheMathematics of Surfaces IV. Oxford: Clarendon Press, 1994. 185~193.
    [15] Volpin. O. Bercovier, M., Matskewich, T. A comparison of invariant energies for free-form surface construction. The Visual Computer. 1999,15(4):199~210.
    [16] Zbeng, J.J., Ball, A.A. Control point surfaces over non- four-sided areas. Computer Aided Geometric Design, 1997,14:807~820.
    [17] Zheng, J.J. The n-sided control point surfaces without twist vectors. CAGD, 2001,18(2):129~134.
    [18] Halstead. M.. Kass, M., DeRose, T. Efficient fair interpolation using Catmull-Clark surfaces. In: Proceedings of the SIGGRAPH Annual Series. California: ACM Press, 1993. 35~44.
    [19] Szeliski. R. Tonnesen, K. Surface modeling with oriented particle systems. Computer Graph, 1992,26(2):185~194.
    [20] Terzopoulos, D. Fleischer, K. Deformable models. Visual Computer, 1988,4(6):306~331.
    [21] Hu. S. Li, Y. Ju, T., et al. Modifying the shape of NURBS surface with geometric constraints. Computer Aided Design.2001 .33( 12):903~912.
    [22] Hu. S., Zhu, X., Sun, J. Shape modification of NURBS surfaces via constrained optimization. Journal of Software,2000.11(12):1567~1571 (in Chinese).
    [22]胡事民,朱翔,孙家广.基于约束优化的NURBS曲面形状修改.软件学报,200,11(12):1567~1571.
    [23] Lin, J., Ball, A.A.. Zheng, J.J. Surface modeling and mesh generation for simulating superplastic forming. Journal of Materials Processing Technology, 1998,80~81:613~619.
    [24] Piegl, L. Modifying the shape of rational B-splines (2 Surfaces). Computer Aided Design, 1989,21(9):538~546.
    [25] Piegl, L. Modifying the shape of rational B-splines (1 Curves). Computer Aided Design, 1989,21(8):509~518.
    [26] Zhang, P. Cheng. F. Constrained scaling of trimmed NURBS surfaces based on fix-and-stretch approach. Computer Aided Design,2001.33(1):103~112.
    [27] Yan. W. Larson, P. Eager aggregation and lazy aggregation. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference of Very Large Data Bases. San Mateo, CA: Morgan Kaufmann Publishers, Inc.. 1995. 345~357.
    [28] Tan, S.T. Wang, T.N., Zhao, Y.F. et al. A constrained finite element method for modeling cloth deformation. Visual Computer,1999.15(2):90~99.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑津津,张建军.塑造n边形曲面的外形.软件学报,2002,13(1):15-23

复制
分享
文章指标
  • 点击次数:3801
  • 下载次数: 4889
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2001-03-01
  • 最后修改日期:2001-09-27
文章二维码
您是第19819615位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号