具有微分输出的神经网络New-CMAC及其学习收敛性
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under G rant No.6983004 (国家自然科学基金); British Royal Society


Research on New-CMAC with Differentiability Output and Its Learning Convergence
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于传统的CMAC神经网络和局部加权回归技术,提出了与传统CMAC(cerebellar model articulation computer)有着同样存储空间量的改进的新CMAC网络New-CMAC,它具有传统的输出和具有其微分信息的输出,因而更适合于自动控制.接着,又提出了其新的学习算法,并研究了其学习收敛性.

    Abstract:

    In this paper, based on conventional CMAC (cerebellar model architecture controller) neural network and locally weighted regression, the improved New CMAC with the same amount of memory as that of conventional CMAC is presented, which has the conventional output and its derivative information output and hence is especially appropriate for automatic control. Accordingly, the new learning algorithm is investigated, and its learning convergence is proved.

    参考文献
    相似文献
    引证文献
引用本文

王士同,J. F. Baldwin, T. P. Martin.具有微分输出的神经网络New-CMAC及其学习收敛性.软件学报,2001,12(5):659-667

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2000-04-18
  • 最后修改日期:2000-10-17
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号