摘要:概念聚类适用于领域知识不完整或领域知识缺乏时的数据挖掘任务.定义了一种基于语义的距离判定函数,结合领域知识对连续属性值进行概念化处理,对于用分类属性和数值属性混合描述数据对象的情况,提出了一种动态概念聚类算法DDCA(domain-baseddynamicclusteringalgorithm).该算法能够自动确定聚类数目,依据聚类内部属性值的频繁程度修正聚类中心,通过概念归纳处理,用概念合取表达式解释聚类输出.研究表明,基于语义距离判定函数和基于领域知识的动态概念聚类的算法DDCA是有效的.