大规模交易数据库的一种有效聚类算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


An Effective Clustering Algorithm in Large Transaction Databases
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究大规模交易数据库的聚类问题,提出了一种二次聚类算法——CATD.该算法首先将数据库划分成若干分区,在每个分区内利用层次聚类算法进行局部聚类,把交易初步划分成若干亚聚类,亚聚类的个数由聚类间的距离参数控制.然后对所有的亚聚类进行全局聚类,同时识别出噪声.由于采用了分区方法和聚类的支持向量表示法,该算法只需扫描一次数据库,聚类过程在内存中进行,因此能处理大规模的数据库.

    Abstract:

    Clustering of transactions can find potential useful patterns to improve the product profit. In this paper, a two-step clustering algorithm——CATD is proposed, applicable in large transaction databases. First, the database is divided into partitions in which transactions are partially clustered into a number of subclusters. A hierarchical clustering algorithm is used to control the distance between these subclusters. In the global clustering, a k-medoids clustering algorithm is performed on the subclusters to get a set of k global clusters and identify noise. The algorithm is feasible for large databases because it only scans the original databases once and the clustering process can be performed in main memory due to the partitioning scheme and the support vector representative of subclusters.

    参考文献
    相似文献
    引证文献
引用本文

陈宁,陈安,周龙骧.大规模交易数据库的一种有效聚类算法.软件学报,2001,12(4):475-484

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2000-07-28
  • 最后修改日期:2000-12-19
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号