基于高斯球的近似共面合并层次细节模型
作者:
基金项目:

国家杰出青年基金资助项目(69925204);国家优秀重点实验室基金资助项目(69823003);国家骨干年轻教师基金资助项目.


A Level of Detail Model by Merging Near-Coplanar Faces Based on Gauss Sphere
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    构造场景多层次细节模型是加速图形显示的有效途径.给出一种基于共面合并自动生成场景多层次细节模型的算法.此算法将一单位球定义为高斯球,并按一定的规则对其进行层次分割.然后根据各景物面片的法向在高斯球上的分布,将具有近似一致法向的面片划分为面片族;在面片族内对相邻面片进行合并,生成近似共面区域;然后移去其内部点,对区域边界重新三角化.算法还结合临近边界点合并等原则,删除对表达场景几何特征重要度低的顶点.算法利用平面九叉树进行合并操作,生成具有多层次细节的场景模型.实验结果表明,算法能实现较理想的场景简化效果.

    Abstract:

    Multiple LOD modeling is an effective approach to speed up the rendering of 3D scenes. An algorithm that creates multiple levels of detail for 3D scene by merging near-coplanar faces is presented in this paper. First a Gauss sphere is defined for the modeling of the scene, which is divided into patches uniformly. Faces of objects in the scene are then attached to the respective spherical patches according to their normal direction. If faces attached to the same patch are adjacent to each other, they are merged to form a near coplanar area (superface). Isolated vertices inside the area are removed and the area is retriangularized. To further improve the simplification, vicinity vertices on the border of the area are merged. The algorithm adopts a planar separation rule to support the hierarchical model. The experimental result shows that the algorithm can achieve the desired simplification effect.

    参考文献
    [1]Clark, J.H. Hierarchical geometric models for visible surface algorithm. Communications of the ACM, 1976,19(10):547~554.
    [2]Pan, Zhi-geng, Ma, Xiao-hu, Shi, Jiao-ying. The automatic generation algorithm for models at multiple levels of detail in virtual environment. Journal of Software, 1996,7(9):526~531 (in Chinese).
    [3]Liu Xue-hui. Research on multiple levels of detail generating for 3D complex objects used in virtual reality [Ph.D. Thesis]. Institute of Software, The Chinese Academy of Sciences, 1998 (in Chinese).
    [4]Kalvin, A.D., Taylor, R.H. Superfaces: polygonal mesh simplification with bounded error. IEEE Transactions on Computer Graphics and Applications, 1996,16(3):64~77.
    [5]Finkelstein, A., Jacobs, C.E., Salesin, D.H. Multiresolution video. In: Rushmerier, H. ed. Proceedings of SIGGRAPH'96. New York: ACM Press, 1996. 281~290.
    [6]Greg Turk. Re-Tiling polygonal surfaces. Computer Graphics, 1992,26(2):55~64.
    [7]Rossignac, J., Borrel, P. Multi-Resolution 3D approximation for rendering complex scenes. In: Falcidieno, B., Kunii, T. eds. Geometric Modeling in Computer Graphics. New York: Springer-Verlag, 1993. 455~465.
    [8]Garland, M., Heckbert, P.S. Surface simplification using quadric error metrics. In: Whitted, T. eds. SIGGRAPH '97 Proceedings. New York: ACM Press, 1997. 209~216.
    [9]Lounsbery, J.M. Multiresolution analysis for surfaces of arbitrary topological type [Ph.D. Thesis]. University of Washington, 1994.
    [10]Eck, M., DeRose, T., et al. Multiresolution analysis of arbitrary meshes. In: Cook, R. ed. SIGGRAPH'95 Proceedings. New York: ACM Press, 1995. 173~182.
    [11]Schroeder, W.J., Zarge, J.A., et al. Decimation of triangle meshes. Computer Graphics, 1992,26(2):65~70.
    [12]Hoppe, H., DeRose, T., Duchamp, T., et al. Mesh optimization. In: Kajiya, J.T. ed. SIGGRAPH'93 Proceedings, New York: ACM Press, 1993. 19~26.
    [13]Zhou Xiao-yun, Liu Shen-quan. Polyhedral model simplification method based on feature angle criterion. Chinese Journal of Computers, 1996,19(supplement):217~223 (in Chinese).
    [14]Hamann, B. A data reduction scheme for triangulated surfaces. Computer Aided Geometric Design, 1994,11(2):197~214.
    [15]Li Jie, Tang Ze-sheng, Guo Hong-hui. Hierarchical multiresolution modeling based on fractal dimension. Chinese Journal of Computers, 1998,21(9):780~786 (in Chinese).
    [16]De Haemer, M.J., Zyda, M.J. Simplification of objects rendered by polygonal approximations. Computer & Graphics, 1991,15(2):175~184.
    [17]Hinker, P., Hansen, C. Geometric optimization. In: Rosenblum L.J., et al. eds. Visualization'93 Proceedings. Los Alamitos, CA: IEEE Computer Society Press, 1993. 189~195.
    [2]潘志庚,马小虎,石教英.虚拟环境中多细节层次模型自动生成算法.软件学报,1996,7(9):526~531.
    [3]刘学慧.虚拟现实中三维复杂几何形体的层次细节模型的研究[博士学位论文].中国科学院软件研究所,1998.281~290.
    [13]周晓云,刘慎权.基于特征角准则的多面体模型简化方法.计算机学报,1996,19(增刊):217~223.
    [15]李捷,唐泽圣.基于分形维数的层次多分辨率模型.计算机学报,1998,21(9):780~786.
    相似文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹卫群,鲍虎军,彭群生.基于高斯球的近似共面合并层次细节模型.软件学报,2000,11(12):1607-1613

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:1999-05-07
  • 最后修改日期:1999-09-21
文章二维码
您是第19793956位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号