几乎最快与渐近最优的并行分枝界限算法
作者:
基金项目:

This project is supported by the Ph.D.Fund of the Ministry of Education of China under Grant No.9703825(国家教育部博士点基金).


A Nearly Fastest and Asymptotically Optimal General Parallel Branch-and-Bound Algorithm
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    分枝界限算法是求解组合优化问题的技术之一,它被广泛地应用在埃运筹学与组合数学中.对共享存储的最优优先一般并行分枝界限算法给出了运行时间复杂度下界Ω(m/p+hlogp),其中p为可用处理器数,h为扩展的结点数,m为状态空间中的活结点数.通过将共享存器设计成p个立体堆,提出了PRAM-EREW上一个新的一般并行分枝界限算法,理论上证明了对于h<p2p,该算法为最快且渐近最优的并行分枝界限算法.最后对0-r背包问题给出了模拟实验结果.

    Abstract:

    Branch-and-Bound (B&B) is a problem-solving technique which is widely used for various problems encountered in operations research and combinatorial mathematics. In this paper, the lower bound of running time Ω(m/p+hlogp)(the base of all logarithms in this paper is 2) is presented for general parallel best-first B&B algorithms on shared memory systems, where p is the number of processors available, h is the number of expanded nodes, and m is the total number of active nodes in state-space tree. In addition, a new general parallel best-first B&B algorithm on PRAM-EREW is proposed by devising the shared memory into p cubeheaps. Theoretical analysis shows that it is the fastest algorithm for h<p2p, and it is asymptotically optimal in this type of general parallel B&B algorithms. Computational experiments are conducted to solve 0-r knapsack problem.

    参考文献
    [1]Gendron, B., Crainic, T.G. Parallel branch-and-bound algorithms: survey and synthesis. Operations Research, 1994,42(6):1042~1065.
    [2]Liao Ching-Jong. New node selection strategy in the branch-and-bound procedure. Computers & Operations Research, 1994,21(10):1095~1101.
    [3]Cheng Chun-Hung. B&B clustering algorithm. IEEE Transactions on Systems, Man and Cybernetics, 1995,25(5):895~898.
    [4]Wu Ji-gang. General data structure and algorithms for branch-and-bound search. In: Information Intelligence and Systems, the 1996 IEEE International Conference on Systems, Man and Cybernetics. Beijing: International Academic Publisher, 1996,2(4):1586~1588.
    [5]Nguyen, V.T. Global optimization techniques for solving the general quadratic integer programming problem. Computational Optimization and Applications, 1998,10(2):149~163.
    [6]Wah, B.W., Ma, E.Y.W. MANIP——a multicomputer architecture for solving combinatorial extremum search problems. IEEE Transactions on Computers, 1984,C-33(5):377~390.
    [7]Lai, T.H., Sahni, S. Anomalies of parallel branch-and-bound algorithms. Communications of the ACM, 1984,27(6):594~602.
    [8]Yahfoufi Nassir, Dowaji Salah. Self-stabilizing distributed branch-and-bound algorithm. In: International Phoenix Conference on Computers and Communications. Piscataway, NJ: IEEE Computer Society, 1996. 246~252.
    [9]Jonsson, J., Shin, K.G. Parameterized branch-and-bound strategy for scheduling precedence-constrained jobs on a multiprocessor system. In: Proceedings of the International Conference on Parallel Processing. Piscataway, NJ: IEEE Computer Society, 1997. 158~165.
    [10]Shinano, Y., Harada, K., Hirabayashi, R. Control schemes in a generalized utility for parallel branch-and-bound algorithms. In: Proceedings of the International Parallel Processing Symposium, IPPS. Los Alamitos, CA: IEEE Computer Society, 1997. 621~627.
    [11]Mahapatra, N.R., Dutt, S. Adaptive quality equalizing: high-performance load balancing for parallel branch-and-bound across applications and computing systems. In: Proceedings of the International Parallel Processing Symposium, IPPS. Los Alamitos, CA: IEEE Computer Society, 1998. 796~800.
    [12]Wu Ji-gang, Chen Guo-liang, Wu Ming. Cubeheap and branch-and-bound algorithms. Journal of Software, 2000,11(7):984~989 (in Chinese).
    [13]Nau, D.S., Kumar, V., Kanal, L. General branch-and-bound and its relation to a A* and AO*. Artificial Intelligence, 1984,23:29~58.
    [14]Lai, T.H., Sprague, A. Performance of parallel branch-and-bound algorithms. IEEE Transactions on Computers, 1985,C-34(10):962~964.
    [15]Rao, V.N., Zhang, W. Building heaps in parallel. Information Processing Letters, 1991,37:355~358.
    [16]Pinotti, M.C., Pucci, G. Parallel algorithms for priority queue operations. Theoretical Computer Science, 1995,148:171~180.
    [17]Carlsson, S., Chen, J., Mattsson C. Heaps with bits. Theoretical Computer Science, 1996,164:1~12.
    [18]Yang, M.K., Das, C.R. Evaluation of a parallel branch-and-bound algorithm on a class of multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1994,5(1):74~86.
    [19]Chen Guo-liang. Design and Analysis of Parallel Algorithms. Beijing: Higher Education Press, 1994 (in Chinese).
    [12] 武继刚,陈国良,吴明.立体维与分枝界限算法.软件学报,2000,11(7):984~989.
    [19] 陈国良.并行算法设计与分析.北京:高等教育出版社,1994.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

武继刚,计永昶,陈国良.几乎最快与渐近最优的并行分枝界限算法.软件学报,2000,11(12):1572-1580

复制
分享
文章指标
  • 点击次数:4471
  • 下载次数: 4753
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:1999-07-13
  • 最后修改日期:1999-10-22
文章二维码
您是第19784061位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号