平面NURBS曲线及其Offset的双圆弧逼近
作者:
基金项目:

本文研究得到国家自然科学基金(No.69772019)和国家863高科技项目基金(No.863- 511-842-004)资助.


The Biarc Approximation of Planar NURBS Curve and Its Offset
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    除直线、圆弧、速端曲线等少数几种曲线外,平面参数曲线的offset曲线通常不能表示成有 理参数形式,因此在实际应用中,为了方便造型系统中数据结构和几何算法的统一表示,offse t曲线通常用低次曲线逼近来表示.通过用双圆弧逼近表示NURBS(non-uniform rational B -spline)曲线及其offset,并利用双圆弧逼近的特有性质,把offset的双圆弧逼近转化为原 曲线的双圆弧逼近,简化了问题的求解.同时考虑了双圆弧逼近算法中分割点的选取、公切点 的确定以及误差估计等主要问题.具体算

    Abstract:

    The planar offset curve cannot be expressed as rational parametric curve in gene ral excepta few types of curves such as line, arc, Hodograghs etc. In practice, the offset curve usually is approximated by lower degree rational polynomial cur ve in order to have the unified expression of data structure and geometric algor ithm in the commercial modeling systems. In this paper, an approximation approac h to NURBS (non-uniform rational B-spline) curve and its offset is presented b y using biarc. The biarc approximation of offset curve is simplified to biarc ap proximation to original curve. Some important and key problems, such as the reas onable selection of split points in NURBS curve, the definition of cotangent poi nt of biarc and error estimate method, are discussed. Examples verify the effici ency and reliability of the algorithms, which are implemented in the commercial geometric modeling systems Gems5.0 developed by CAD Center of Tsinghua University.

    参考文献
    1  Coquillart S. Computing offset of B-spline curves. Computer Ai ded Design, 1987,19(6):305~309 2  Elber G, Lee I K, Kim M S. Computing offset curve approximation methods . IEEE CG&A, 1997,17(3):62~71 3  Farouki R, Neff C A. Analytic properties of plane offset curves. Comput er Aided Geometric Design, 1990,7(1):83~99 4  Farouki R, Neff C A. Algebraic properties of plane offset curves. Compu ter Aided Geometric Design, 1990,7(1):101~127 5  Hoschek J. Spline approximation of offset curves. Computer Aided Geomet ric Design, 1988,5(1):34~40 6  Kim M S, Park E J, Lim S B. Approximation of variable-radius offset cu rves and its application to Bezier brush-stroke design. Computer Aided Design, 1993,25(11):684~698 7  Klass R. An offset spline approximation for plane cubic splines. Comput er Aided Design, 1983,15(5):97~299 8  Lee I K, Kim M S, Elber G. Plane curve offset based on circle approxima tion. Computer Aided Design, 1996,28(8):617~630 9  Ong C J, Wong S, Loh H T et al. An optimization approach for biarc curve-fitting of B-spline curves. Computer Aided Design, 1996,26(12):951~959 10  Persson H. NC machining of arbitrarily shaped profile. Computer Aided Design , 1978,10(4):169~174 11  Pham B. Offset approximation of uniform B-splines. Computer Aided Design, 1988,20(8):471~474 12  Tiller W, Hanson E G. Offsets of two dimensional profile. IEEE CG&A, 1984,4( 9):36~46 13  Dong G, Liang You-dong, He Zhi-jun. Spline curve and its biarc approx imation. Acta Mathematae Applagatae Sinica, 1978,1(4):330~340 (董广昌,梁友栋,何志均等.样条曲线与双圆弧逼近.应用数学学报,1978,1(4):330~340) 14  Su Bu-chin, Liu Ding-yuan. Computational Geometry——Curve and Surfac e Modeling. New York: Academic Press, 1989
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪国平,孙家广.平面NURBS曲线及其Offset的双圆弧逼近.软件学报,2000,11(10):1368-1374

复制
分享
文章指标
  • 点击次数:4497
  • 下载次数: 4749
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:1999-04-23
  • 最后修改日期:1999-08-02
文章二维码
您是第19819456位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号