摘要:众所周知,“模式定理”和“隐性并行性”是遗传算法(genetic algorithms,简称GA算法)的两大理论基础.该文对这两个原理进行分析,指出这两个原理存在有不严格和不足之处,即作为GA算法的基础,这两个原理尚欠完善.为加深对GA的理解,文章提出遗传算法的一个新的改进模型——理想浓度模型.通过对此模型的分析,得出遗传算法本质上是一个具有定向制导的随机搜索技术.其定向制导原则是,导向以适应度高的模式为祖先的染色体“家族”方向.最后给出两个典型的函数求最大值的模拟例子.从模拟结果看,改进后的GA算法大大提高了算法的速度,解的精度也有所提高.这说明新算法具有应用的潜力.