在消息传递并行机上的高效的最小生成树算法
作者:
基金项目:

This research is supported by the Ph.D.Foundation of State Education Commission of China(国家教育部博士点基金No.9703825)


An Efficient Parallel Minimum Spanning Tree Algorithm on Message Passing Parallel Machine
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于传统的Borǔ vka串行最小生成树算法,提出了一个在消息传递并行机上的高效的最小生成树算法.并且采用3种方法来提高该算法的效率,即通过两趟合并及打包收缩的方法来减少通信开销,通过平衡数据分布的办法使各个处理器的计算量平衡.该算法的计算和通信复杂度分别为O(n2/p)和O((tsp+twn)n/p).在曙光-1000并行机上运行的实际效果是,对于有10 000个顶点的稀疏图,通过16个节点的运行加速比是12.

    Abstract:

    An efficient parallel minimum spanning tree is proposed based on the classical Borüvka's algorithm on message passing parallel machine. Three methods were used to improve its efficiency, including two-phase union and packaged contraction for reducing communication costs, and the balanced data distribution for computation balance in each processor. The computation and communication costs of the algorithm are O(n2/p) and O((tsp+twn)n/p). On Dawning-1000 parallel machine, it gets a speedup of 12 on 16 processors with a sparse graph of 10 000 vertices.

    参考文献
    [1]Lormen T H, Leiserson C R, Rivert R L. Introduction to Algorithms. Massachusetts: The MIT Press, 1990. 77~81
    [2]Borvka O, O Jistm problmu minimlnm. Prce Mor. Podovd Spol v Brn (Acta Societ Scient Natur Moravicae), 1926,3:37~58
    [3]Kruskal J B. On the shortest subtree of a graph and the travelling salesman problem. In: Proceedings American Math Society, 1956,7(1):48~50
    [4]Prim R C. Shortest connection networks and some generalizations. Bell System Technology Journal, 1951,B.6(6):1389~1401
    [5]Fredman M L, Tarjan R E. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of ACM, 1987,34:596~615
    [6]Gabow H N, Galil Z, Spiencer T et al. Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica, 1986,6:109~122
    [7]Bernard Chazelle. A fast deterministic algorithm for minimum spanning trees. In: Proceedings of the 38th Annual Symposium on Foundation of Computer Science. 1997. 20~22
    [8]Tsin Y H, Chin F Y. Efficient parallel algorithm for a class of graph theoretic problems. SIAM Journal of Computer, 1984,13(3):580~590
    [9]Nath R, Maheshwari S N. Parallel algorithms for the connected components and minimal tree problems. Information Proceedings Letter, 1982,14(1):7~11
    [10]Huang M D. Solving some graph problems with optimal or near-optimal speedup on mesh-of-tree problems. In: Proceedings of the 26th Annual. IEEE Symposium, Portland, 1985. 232~240
    [11]Sun Chung, Anne Condon. Parallel implementation of Borüvka's minimum spanning tree algorithm. In: Proceedings of IPPS'96. Hawii,1996. 302~308
    [12]Cheng Guo-liang. The Design and Analyses of Parallel Algorithm. Beijing: Advanced Education Publishing House, 1994. 30~32
    [13]Vipin Kumar, Ananth Grama, Anshul Gupta et al. Introduction to Parallel Computing. San Francisco: The Benjamin/Cummings Publishing Company, 1994. 45~49
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王光荣,顾乃杰.在消息传递并行机上的高效的最小生成树算法.软件学报,2000,11(7):889-898

复制
分享
文章指标
  • 点击次数:4085
  • 下载次数: 5064
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:1999-01-21
  • 最后修改日期:1999-07-20
文章二维码
您是第19868077位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号