基于Rough Set的空间数据分类方法
作者:
基金项目:

本文研究得到国家863高科技项目基金(No.863-306-ZD-07-4)资助.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近来,数据采掘的研究已从关系型和事务型数据库扩展到空间数据库.空间数据采掘是一个很有发展前景的领域,其中空间数据分类的研究尚处在起步阶段.该文分析和比较了现有的几个空间数据分类方法的利和弊,提出利用Rough Set的三阶段空间分类过程.实验结果表明,该算法对于解决包含不完整空间信息的问题是有效的.

    Abstract:

    Recent studies have extended the scope of data mining from relational and transactional databases to spatial databases. Spatial data mining is a promising field, where the research work on spatial data classification is still in its initial stage. In this paper, the advantages and the disadvantages of several existing methods of spatial data classification are compared first. Then an effective three-step method, which is based on the rough set theory for spatial data classification, is proposed. The validity of this algorithm to the problem of incomplete spatial information is verified by pertinent experimental results.

    参考文献
    1  Koperski K, Han J W. Discovery of spatial association rules in geographic information databases. In: Egenhofer M J ed. Proceedings of the 4th International Symposium on Spatial Databases (SSD'95), Advances in Spatial Databases. Berlin: Springer-Verlag, 1995. 47~66 2  Ester M, Kriegel H P, Sander J et al. A density-based algorithm for discovering clusters in large spatial databases. In: Simondis E, Han J W, Fayyad U M eds. Proceedings of the 2nd International Conference on Data Mining (KDD-96). Portland: Oregon, 1996. 226~231 3  Lu W, Han J W, Ooi B C et al. Discovery of general knowledge in large spatial databases. In: Proceedings of Far East Workshop on Geographic Information Systems. Singapore: World Scientific, 1993. 275~289 4  Ng R T, Yu Y. Discovering strong, common and discriminating characteristics of clusters from thematic maps. In: Proceedings of the 11th Annual Symposium on Geographic Information Systems. 1997. 392~394 5  Fayyad U M, Piatetsky-Shapiro G, Smyth P et al. Advances in Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI/MIT Press, 1996 6  Quinlan J R. Induction of decision trees. Machine Learning, 1986,(1):81~106 7  Safavian S R, Landgrebe D. A survey of decision tree classifier technology. IEEE Transactions on Systems, Man and Cybernetics, 1991,21(3):660~674 8  Fayyad U M, Djorgovski S G, Weir N et al. Automating the analysis and cataloging of sky surveys. In: Advances in Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI/MIT Press, 1996 9  Ester M, Kriegel H P, Sander J. Spatial data mining: a database approach. In: Scholl M, Voisard A eds. Proceedings of the International Symposium on Large Spatial Databases (SSD'97). Berlin, New York: Springer-Verlag, 1997. 47~66 10  Koperski K, Han J W, Stefanovic N. An efficient two-step method for classification of spatial data. In: Poiker T ed. Proceedings of the 1998 International Symposium on Spatial Data Handling (SDH'98). Vancouver, BC, 1998 11  Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning About Data. Amsterdam, North-Holland: Kluwer Academic Publishers, 1992 12  Peterson K. A trade area primer. Business Geographics, 1997,5(9):18~21 13  Wetteschereck D, Aha D W, Mohri T. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review, 1997,(10):1~37 14  Kira K, Rendell L A. The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the 10th National Conference on Artificial Intelligence (AAAI-92). Cambridge, MA: MIT Press, 1992. 129~134 15  Wang Jue, Wang Ren, Miao Duo-qian et al. Data enriching based on rough set theory. Chinese Journal of Computers, 1998,21(5):393~400 (王珏,王任,苗夺谦等.基于Rough Set理论的“数据浓缩”.计算机学报,1998,21(5):393~400)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

石云,孙玉芳,左春.基于Rough Set的空间数据分类方法.软件学报,2000,11(5):673-678

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:1999-02-04
  • 最后修改日期:1999-05-24
文章二维码
您是第19784169位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号