Bézier曲面的函数复合及其应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

This research is supported by the National Natural Science Foundation of China.


Functional Compositions via Shifting Operators for Bézier Patches and Their Applications
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前有两种常用的Bézier曲面片,分别称为三角和四边Bézier曲面片,它们分别用不同的基函数表示.本文通过移位算子和函数复合的方法,得到了两个关于这两种Bézier曲面片的结果.一个是四边Bézier曲面片与一次三角Bézier函数的复合,另一个是三角Bézier曲面片与双线性四边Bézier函数的复合.在每一种情况中,复合所得到的Bézier曲面片的控制顶点是原来Bézier曲面片的控制顶点的线性组合.移位算子的应用使得相应的推导过程变得简洁和直观.这两个结果的应用包括:两种Bézier面片间的转化

    Abstract:

    There are two kinds of Bézier patches which are represented by different base functions, namely the triangular Bézier patch and the rectangular Bézier patch. In this paper, two results about these patches are obtained by employing functional compositions via shifting operators. One is the composition of a rectangular Bézier patch with a triangular Bézier function of degree 1, the other is the composition of a triangular Bézier patch with a rectangular Bézier function of degree 1×1. The control points of the resultant patch in either case are the linear convex combinations of the control points of the original patch. With the shifting operators, the respective procedure becomes concise and intuitive. The potential applications of the two results include conversions between two kinds of Bézier patches, exact representation of a trimmed surface, natural extension of original patches, etc.

    参考文献
    相似文献
    引证文献
引用本文

冯结青,彭群生. Bézier曲面的函数复合及其应用.软件学报,1999,10(12):1316-1321

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:1998-01-19
  • 最后修改日期:1998-05-26
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号