隐函数的布尔操作
作者:
基金项目:

本文研究得到国家自然科学基金和国家杰出青年基金资助.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    若隐函数曲面由等式f(x,y,z)=0定义,则其相对应的实体满足不等式f(x,y,z)≥0,对这种实体的并、交、差等布尔操作采用R-函数来实现.特别地,由Metaball定义的隐函数,除具有隐函数的一般性质外,还可用于实体造型中的过渡及变形控制等.证明了用R-函数实现实体的布尔操作的可行性及Metaball模型在几何造型中能光滑过渡等性质.

    Abstract:

    When implicit surface is defined by equation f(x,y,z)=0, the object defined by the implicit function is the set of points which satisfy the inequation f(x,y,z)≥0. For the object, it's possible to do union, intersection and subtraction etc using R-function. As a special implicit function, the Metaball function can also be used in blend and deformation for solid modeling except the common properties of implicit function. It is proved that R-function can be used in Boolean operation of solid modeling and Metaball model can be used in the blending of shape.

    参考文献
    1  杨行健.微机三维实体造型的原理与实践.西安:西北工业大学出版社,1993 (Yang Xing-jian. Principle and Practice of 3D Solid Modeling by Micro-computer. Xi'an: Xibei Industry University Press, 1993) 2  Pasko A et al. Function representation in geometric modeling: concepts, implementation and applications. The Visual Computer, 1995,11(9):429~446 3  Crespin B et al. Implicit sweep objects. In: Rossignac J et al eds. Proceedings of the Eurographics'96. Britain: Blackwell Publishers, 1996.15(3):165~174 4  Pasko A et al. Implicit Curved Polygons. Technical Report 96-1-004, Japan: University of Aizu, 1996 5 Nishita T et al. A method for displaying metaballs by using Bézier clipping. In: Rossignac J et al eds. Proceedings of the Eurographics'94. Britain: Blackwell Publishers, 1994,13(3):271~280 6 Wyvill G et al. Data structure for soft objects. The Visual Computer, 1986,2(5):227~234 7  Fronmentin M et al. Dynamic implicit surface tessellation. In: ACM VRSR'97. Lausanne Switzerland, 1997. 79~86
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

余正生,彭群生,马利庄.隐函数的布尔操作.软件学报,1998,9(9):699-702

复制
分享
文章指标
  • 点击次数:3706
  • 下载次数: 4801
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:1998-02-28
  • 最后修改日期:1998-04-20
文章二维码
您是第19793956位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号