基于广义元球的一般约束变形
作者:
基金项目:

本文研究得到国家自然科学基金和浙江省自然科学基金资助.


General Constrained Deformations Based on Generalized Metaballs
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在计算机动画和形状设计中,变形是一个非常重要的工具.基于广义元球所具有的特殊势函数分布,提出了一个新的包含点、线、面和体约束的一般变形模型.用户定义一系列约束、每个约束的影响半径和偏移量,变形模型根据每个约束和其影响半径产生该约束的广义元球.广义元球确定了一个以约束点集为中心的势函数,该势函数在约束点集处为1,在影响半径处渐变为0.模型直接对整个空间进行变形,而与物体的表示无关,并且变形可由偏移量和广义元球的参数来细微调整.实验表明,该一般约束变形模型不仅有效,而且使传统方法难以做到的线、面、体约束变形成

    Abstract:

    Space deformation is a very important tool in computer animation and shape design. In this paper, the authors propose a new general deformation model containing point, line, surface and volume constraints based on the special distribution of the potential function of a generalized metaball. The user specifies a series of constraints, the effective radius and displacement of each constraint, then the deformation model creates a generalized metaball for each constraint according to each specified constraint and its effective radius. The generalized metaball produces a potential function centered on the constraint, it drops from 1 on the constraint to 0 on the effective radius. This deformation model operates on the whole space and is independent of the underlining representation of the object to be deformed. The deformation can be finely controlled by adjusting the parameters of the generalized metaballs. Experiments show this general deformation model is efficient and can deal with line, surface and volume constrains which are difficult for the traditional deformation models.

    参考文献
    1  Barr A H. Global and local deformation of solid primitives. Computer Graphics, 1984,18(3):21~30 2  Watt A, Watt M. Advanced animation and rendering techniques. Addison-Wesley Publishing Company, 1992. 405~408 3  金小刚,鲍虎军,彭群生.一种新的基于factor curve的变形控制方法.软件学报,1996,7(9):537~541 (Jin Xiao-gang, Bao Hu-jun, Peng Qun-sheng. A new deformation control method based on factor curves. Journal of Software, 1996,7(9):537~541) 4  Sederberg T W, Parry S R. Free-form deformation of solid geometric models. Computer Graphics, 1996,30(4):537~541 5  Coquillart S. Extended free-form deformation: a sculpturing tool for 3D geometric modeling. Computer Graphics, 1990,24(4):187~193 6  MacCracken R, Joy K I. Free-form deformations with lattices of arbitrary topology. Computer Graphics, 1996,30(3):181~188 7  Hsu W, Hughes J, Kaufmann H. Direct manipulations of free-form deformations. Computer Graphics, 1992,26(2):177~184 8  Lazarus F, Coquillart S, Jancence P. Axial deformations: an intuitive deformation technique. Computer Aided Design, 1994,26:607~613 9  Peng Qun-sheng, Jin Xiao-gang, Feng Jie-qing. Arc-length-based axial deformation and length preserving deformation. In: Thalmann N ed. Proceedings of Computer Animation'97. Geneva, IEEE Computer Society, 1997. 87~93 10  Borrel P, Bechmann D. Deformation of N-dimensional objects. International Journal of Computational Geometry & Applications, 1991,1(4):427~453 11  Borrel P, Rappoport A. Simple constrained deformations for geometric modeling and interactive design. ACM Transactions on Graphics, 1994,13(2):137~155 12  Bao Hu-jun, Jin Xiao-gang, Peng Qun-sheng. Point constrained deformations based on metaballs. In: Li Hua ed. Proceedings of CAD/Graphics'97. Shenzhen: International Academic Publishers, 1997. 327~331 13  Nishimura H, Hirai M, Kawai T. Object modeling by distribution function and a method of image generation. Transactions on IECE, 1985,68-D(4):718~725 14  Wyvill G, McPheeters C, Wyvill B. Data structure for soft objects. The Visual Computer, 1986,2:227~234 15  Wyvill B, Wyvill G. Field functions for implicit surfaces. The Visual Computer, 1989,5:75~82 16  Nishita T, Nakamae E. A method for displaying metaballs by using Bézier clipping. Computer Graphics Forum, 1994,13(3):271~280 17  Bloomenthal J, Wyvill B. Interactive techniques for implicit modeling. Computer Graphics, 1990,24(2):109~116 18  Bloomenthal J, Shoemake K. Convolution surfaces. Computer Graphics, 1991,25(4):251~256 19  Schneider P J. Solving the nearest-point-on-curve problem. In: Glassner A S ed. Graphics Gems I, Academic Press, 1990. 607~611 20  Hart J C. Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces. The Visual Computer, 1996,12:527~545
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

金小刚,彭群生.基于广义元球的一般约束变形.软件学报,1998,9(9):677-682

复制
分享
文章指标
  • 点击次数:3897
  • 下载次数: 4430
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:1998-02-28
  • 最后修改日期:1998-04-20
文章二维码
您是第19940293位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号