一种有效的概率上下文无关文法分析算法*
作者:
基金项目:

本文研究得到国家自然科学基金和航天预研基金资助.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    句法分析的研究是自然语言处理领域的一个重要组成部分.该文提出并实现了一种有效的概率上下文无关文法SCFG(stochastic context-free grammar)的分析算法.首先对原有的GLR分析表加以改造,以便能够利用分析过程的控制结构来计算有关的概率;然后对分析过程中的每个状态增设了下标,以区分不同的归约路径.通过上述手段,成功地引入了状态的前向(Forward)概率和内(Inner)概率.利用这两个概率可以计算输入句子的所有可能分析树的概率,用于选择最佳的分析结果.通过对大规模真实文本进行实

    Abstract:

    The research of parsing is important in the field of natural language processing. An efficient stochastic context-free parsing algorithm is described in this paper. In order to implement a stochastic context-free parser, the authors rebuild a GLR-algorithm-like parsing table so that derivation probabilities can be computed efficiently by making use of the parsing control structure, and add indices to each state in parsing period as identifiers of different parsing paths. Based on the techniques above, the forward and inner probabilities of states are introduced in this paper. With these two probabilities, the probabilities of all parsing trees of the input sentence can be computed to select an optimal parsing result. The experiment shows that the proposed algorithm is efficient.

    参考文献
    1  Fujisaki T, Jelinek F, Cocke J et al. A probabilistic parsing method for sentence disambiguation. In: Tomita M ed. Current Issues in Parsing Technology, International Workshop on Parsing Technologies. Pittsburgh, Boston: Kluwer Academic Publishers, 1991. 139~152 2  Stolcke A. An efficient probabilistic context-free parsing algorithm that computes prefix probabilities. Computational Linguistics, 1995,21(2):165~201 3  Wright J H. LR parsing of probabilistic grammars with input uncertainty for speech recognition. Computer Speech and Language, 1990,(4):297~323 4  Shann P. Experiments with GLR and chart parsing. In: Tomita M ed. Generalized LR Parsing, International Workshop on Parsing Technologies. Pittsburgh, Boston: Kluwer Academic Publishers, 1991. 17~34 5  Tomita M. Efficient Parsing for Natural Language. Boston: Kluwer Academic Publishers, 1986 6  朱胜火.从双语对齐文本中获取翻译模板[硕士论文].清华大学,1997 (Zhu Sheng-huo. Learning translation patterns from bilingual aligned text [M.S. Thesis]. Tsinghua University, 1997) 7  张民.基于弱限制随机上下文相关文法的汉语树库构造方法研究[博士论文].哈尔滨工业大学,1997 (Zhang Min. Research on algorithms of Chinese treeback construction based on weakly restricted stochastic context-sensitive grammars[Ph.D. Dissertation]. Harbin: Harbin Institute of Technology, 1997) 8  Lee L-S, Chien L-F, Lin L-J et al. An efficient natural language processing system specially designed for the Chinese language. Computational Linguistics, 1991,17(4):347~375 9  Sampson G. English for the Computer. Oxford: Oxford University Press, 1995
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱胜火,周 明,刘 昕,黄昌宁.一种有效的概率上下文无关文法分析算法*.软件学报,1998,9(8):592-597

复制
分享
文章指标
  • 点击次数:4157
  • 下载次数: 5179
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:1996-11-07
  • 最后修改日期:1997-07-18
文章二维码
您是第19999542位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号