二进制神经网络分类问题的几何学习算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

本文研究得到国家自然科学基金、国家863高科技项目基金和山东省自然科学基金资助.


A GEOMETRICAL LEARNING ALGORITHM OF BINARY NEURAL NETWORKS FOR CLASSIFICATION
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    分类问题在前向神经网络研究中占有重要位置.本文利用几何方法给出一个二进制神经网络K(≥2)分类问题的新学习算法.算法通过训练点的几何位置与类别分析,建立一个四层前向神经网络,实现网络输入向量分类.本文算法的优点在于:保证学习收敛且收敛速度快于BP算法及已有的其他一些前向网络学习算法;算法可以确定神经网络的结构且能实现精确的向量分类.另外,算法所建神经网络由线性阀值单元组成,神经元突触权值和阀值均为整数,特别适合于集成电路实现.

    Abstract:

    Binary to binary mapping for classification plays an important role in the researches on feed-forward-neural-network learning.In this paper,the geometrical method is employed to work out a new algorithm to train binary neural networks for classification.By analysis of every training vertex's geometrical location,the algorithm alwavs produces a neural network of four layers for a certain classification problem.The advantages of this algorithm are:it runs with guaranteed convergence and goes to converge much more quickly than BP and some other algorithms;it can determine the structure of the neural networks by learning SO that a precise classification is carried out.In addition,every neuron generated by the algorithm employs a hard-limit activation func-tion with integer synaptic weights,which makes the actual implementation by VLSI tech-nology more facilitated.

    参考文献
    相似文献
    引证文献
引用本文

朱大铭,马绍汉.二进制神经网络分类问题的几何学习算法.软件学报,1997,8(8):622-629

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:1996-09-17
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号